




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若x是2的相反數(shù),|y|=3,則的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或42.下列判斷錯誤的是()A.對角線相等的四邊形是矩形B.對角線相互垂直平分的四邊形是菱形C.對角線相互垂直且相等的平行四邊形是正方形D.對角線相互平分的四邊形是平行四邊形3.在-,,0,-2這四個數(shù)中,最小的數(shù)是()A. B. C.0 D.-24.關于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a(chǎn)≠±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.a(chǎn)=±15.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示sinα的值,錯誤的是()A. B. C. D.6.數(shù)軸上有A,B,C,D四個點,其中絕對值大于2的點是()A.點A B.點B C.點C D.點D7.在數(shù)軸上到原點距離等于3的數(shù)是()A.3 B.﹣3 C.3或﹣3 D.不知道8.下列圖標中,是中心對稱圖形的是()A. B.C. D.9.某市從今年1月1日起調(diào)整居民用水價格,每立方米水費上漲.小麗家去年12月份的水費是15元,而今年5月的水費則是10元.已知小麗家今年5月的用水量比去年12月的用水量多5m1.求該市今年居民用水的價格.設去年居民用水價格為x元/m1,根據(jù)題意列方程,正確的是()A. B.C. D.10.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉(zhuǎn)動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m二、填空題(共7小題,每小題3分,滿分21分)11.計算:___.12.如圖,在△ABC中,BA=BC=4,∠A=30°,D是AC上一動點,AC的長=_____;BD+DC的最小值是_____.13.若二次函數(shù)y=-x2-4x+k的最大值是9,則k=______.14.已知反比例函數(shù)的圖像經(jīng)過點,那么的值是__.15.2018年春節(jié)期間,反季游成為出境游的熱門,中國游客青睞的目的地仍主要集中在溫暖的東南亞地區(qū).據(jù)調(diào)查發(fā)現(xiàn)2018年春節(jié)期間出境游約有700萬人,游客目的地分布情況的扇形圖如圖所示,從中可知出境游東南亞地區(qū)的游客約有________萬人.16.已知點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),則ab的值為_____.17.如圖,線段AC=n+1(其中n為正整數(shù)),點B在線段AC上,在線段AC同側作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當AB=1時,△AME的面積記為S1;當AB=2時,△AME的面積記為S2;當AB=3時,△AME的面積記為S3;…;當AB=n時,△AME的面積記為Sn.當n≥2時,Sn﹣Sn﹣1=▲.三、解答題(共7小題,滿分69分)18.(10分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個交點時,設此交點與點C的距離為d,直接寫出d的取值范圍.19.(5分)如圖,輪船從點A處出發(fā),先航行至位于點A的南偏西15°且點A相距100km的點B處,再航行至位于點A的南偏東75°且與點B相距200km的點C處.(1)求點C與點A的距離(精確到1km);(2)確定點C相對于點A的方向.(參考數(shù)據(jù):2≈1.41420.(8分)某中學九年級甲、乙兩班商定舉行一次遠足活動,、兩地相距10千米,甲班從地出發(fā)勻速步行到地,乙班從地出發(fā)勻速步行到地.兩班同時出發(fā),相向而行.設步行時間為小時,甲、乙兩班離地的距離分別為千米、千米,、與的函數(shù)關系圖象如圖所示,根據(jù)圖象解答下列問題:直接寫出、與的函數(shù)關系式;求甲、乙兩班學生出發(fā)后,幾小時相遇?相遇時乙班離地多少千米?甲、乙兩班相距4千米時所用時間是多少小時?21.(10分)經(jīng)過江漢平原的滬蓉(上海﹣成都)高速鐵路即將動工.工程需要測量漢江某一段的寬度.如圖①,一測量員在江岸邊的A處測得對岸岸邊的一根標桿B在它的正北方向,測量員從A點開始沿岸邊向正東方向前進100米到達點C處,測得∠ACB=68°.(1)求所測之處江的寬度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的測量方案外,請你再設計一種測量江寬的方案,并在圖②中畫出圖形.(不用考慮計算問題,敘述清楚即可)22.(10分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為1.當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.23.(12分)如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.24.(14分)解方程:.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
直接利用相反數(shù)以及絕對值的定義得出x,y的值,進而得出答案.【詳解】解:∵x是1的相反數(shù),|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故選D.【點睛】此題主要考查了有理數(shù)的混合運算,正確得出x,y的值是解題關鍵.2、A【解析】
利用菱形的判定定理、矩形的判定定理、平行四邊形的判定定理、正方形的判定定理分別對每個選項進行判斷后即可確定正確的選項.【詳解】解:、對角線相等的四邊形是矩形,錯誤;、對角線相互垂直平分的四邊形是菱形,正確;、對角線相互垂直且相等的平行四邊形是正方形,正確;、對角線相互平分的四邊形是平行四邊形,正確;故選:.【點睛】本題考查了命題與定理的知識,解題的關鍵是能夠了解矩形和菱形的判定定理,難度不大.3、D【解析】
根據(jù)正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù),兩個負數(shù),絕對值大的反而小比較即可.【詳解】在﹣,,0,﹣1這四個數(shù)中,﹣1<﹣<0<,故最小的數(shù)為:﹣1.故選D.【點睛】本題考查了實數(shù)的大小比較,解答本題的關鍵是熟練掌握實數(shù)的大小比較方法,特別是兩個負數(shù)的大小比較.4、C【解析】
根據(jù)一元一次方程的定義即可求出答案.【詳解】由題意可知:,解得a=?1故選C.【點睛】本題考查一元二次方程的定義,解題的關鍵是熟練運用一元二次方程的定義,本題屬于基礎題型.5、D【解析】【分析】根據(jù)在直角三角形中,銳角的正弦為對邊比斜邊,可得答案.【詳解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正確,不符合題意;B、在Rt△ABC中,sinα=,故B正確,不符合題意;C、在Rt△ACD中,sinα=,故C正確,不符合題意;D、在Rt△ACD中,cosα=,故D錯誤,符合題意,故選D.【點睛】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.6、A【解析】
根據(jù)絕對值的含義和求法,判斷出絕對值等于2的數(shù)是﹣2和2,據(jù)此判斷出絕對值等于2的點是哪個點即可.【詳解】解:∵絕對值等于2的數(shù)是﹣2和2,∴絕對值等于2的點是點A.故選A.【點睛】此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關鍵要明確:①互為相反數(shù)的兩個數(shù)絕對值相等;②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負數(shù)的數(shù).③有理數(shù)的絕對值都是非負數(shù).7、C【解析】
根據(jù)數(shù)軸上到原點距離等于3的數(shù)為絕對值是3的數(shù)即可求解.【詳解】絕對值為3的數(shù)有3,-3.故答案為C.【點睛】本題考查數(shù)軸上距離的意義,解題的關鍵是知道數(shù)軸上的點到原點的距離為絕對值.8、B【解析】
根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【點睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.9、A【解析】解:設去年居民用水價格為x元/cm1,根據(jù)題意列方程:,故選A.10、B【解析】
因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據(jù)正弦來解題,求出∠CAB,進而得出∠C′AB′的度數(shù),然后可以求出魚線B'C'長度.【詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【點睛】此題主要考查了解直角三角形的應用,解本題的關鍵是把實際問題轉(zhuǎn)化為數(shù)學問題.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
直接利用負指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)分別化簡得出答案.【詳解】原式.故答案為.【點睛】本題考查了實數(shù)運算,正確化簡各數(shù)是解題的關鍵.12、(Ⅰ)AC=4(Ⅱ)4,2.【解析】
(Ⅰ)如圖,過B作BE⊥AC于E,根據(jù)等腰三角形的性質(zhì)和解直角三角形即可得到結論;(Ⅱ)如圖,作BC的垂直平分線交AC于D,則BD=CD,此時BD+DC的值最小,解直角三角形即可得到結論.【詳解】解:(Ⅰ)如圖,過B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=AB=2,∴AC=2AE=4;(Ⅱ)如圖,作BC的垂直平分線交AC于D,則BD=CD,此時BD+DC的值最小,∵BF=CF=2,∴BD=CD==,∴BD+DC的最小值=2,故答案為:4,2.【點睛】本題考查了等腰三角形的性質(zhì),線段垂直平分線的性質(zhì),解直角三角形,正確的作出輔助線是解題的關鍵.13、5【解析】y=?(x?2)2+4+k,∵二次函數(shù)y=?x2?4x+k的最大值是9,∴4+k=9,解得:k=5,故答案為:5.14、【解析】
將點的坐標代入,可以得到-1=,然后解方程,便可以得到k的值.【詳解】∵反比例函數(shù)y=的圖象經(jīng)過點(2,-1),
∴-1=
∴k=?;
故答案為k=?.【點睛】本題主要考查函數(shù)圖像上的點滿足其解析式,可以結合代入法進行解答15、1【解析】分析:用總人數(shù)乘以樣本中出境游東南亞地區(qū)的百分比即可得.詳解:出境游東南亞地區(qū)的游客約有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(萬).故答案為1.點睛:本題主要考查扇形統(tǒng)計圖與樣本估計總體,解題的關鍵是掌握各項目的百分比之和為1,利用樣本估計總體思想的運用.16、2【解析】
根據(jù)“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)”求出ab的值即可.【詳解】∵點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【點睛】本題考查了關于x軸,y軸對稱的點的坐標,解題的關鍵是熟練的掌握關于y軸對稱的點的坐標的性質(zhì).17、【解析】連接BE,∵在線段AC同側作正方形ABMN及正方形BCEF,∴BE∥AM.∴△AME與△AMB同底等高.∴△AME的面積=△AMB的面積.∴當AB=n時,△AME的面積為,當AB=n-1時,△AME的面積為.∴當n≥2時,三、解答題(共7小題,滿分69分)18、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】
(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進而可得出CB′的長度,再結合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點O作OG⊥AD于點G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當點B′在直線CD上時,如圖4所示,在Rt△AB′D中(點B′在點D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當點B′在點D右邊時,半圓交直線CD于點D、B′.∴當半圓弧與直線CD只有一個交點時,4-≤d<4或d=4+.【點睛】本題考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及切線的性質(zhì),解題的關鍵是:(2)利用相似三角形的性質(zhì)求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數(shù)形結合求出d的取值范圍.19、(1)173;(2)點C位于點A的南偏東75°方向.【解析】試題分析:(1)作輔助線,過點A作AD⊥BC于點D,構造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC為直角三角形;然后根據(jù)方向角的定義,即可確定點C相對于點A的方向.試題解析:解:(1)如答圖,過點A作AD⊥BC于點D.由圖得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=503.∴CD=BC﹣BD=200﹣50=1.在Rt△ACD中,由勾股定理得:AC=AD答:點C與點A的距離約為173km.(2)在△ABC中,∵AB2+AC2=1002+(1003)2=40000,BC2=2002=40000,∴AB2+AC2=BC2.∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:點C位于點A的南偏東75°方向.考點:1.解直角三角形的應用(方向角問題);2.銳角三角函數(shù)定義;3.特殊角的三角函數(shù)值;4.勾股定理和逆定理.20、(1)y1=4x,y2=-5x+1.(2)km.(3)h.【解析】
(1)由圖象直接寫出函數(shù)關系式;(2)若相遇,甲乙走的總路程之和等于兩地的距離.【詳解】(1)根據(jù)圖可以得到甲2.5小時,走1千米,則每小時走4千米,則函數(shù)關系是:y1=4x,乙班從B地出發(fā)勻速步行到A地,2小時走了1千米,則每小時走5千米,則函數(shù)關系式是:y2=?5x+1.(2)由圖象可知甲班速度為4km/h,乙班速度為5km/h,設甲、乙兩班學生出發(fā)后,x小時相遇,則4x+5x=1,解得x=.當x=時,y2=?5×+1=,∴相遇時乙班離A地為km.(3)甲、乙兩班首次相距4千米,即兩班走的路程之和為6km,故4x+5x=6,解得x=h.∴甲、乙兩班首次相距4千米時所用時間是h.21、(1)21米(2)見解析【解析】試題分析:(1)根據(jù)題意易發(fā)現(xiàn),直角三角形ABC中,已知AC的長度,又知道了∠ACB的度數(shù),那么AB的長就不難求出了.(2)從所畫出的圖形中可以看出是利用三角形全等、三角形相似、解直角三角形的知識來解決問題的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC?tan68°≈100×2.1=21(米)答:所測之處江的寬度約為21米.(2)①延長BA至C,測得AC做記錄;②從C沿平行于河岸的方向走到D,測得CD,做記錄;③測AE,做記錄.根據(jù)△BAE∽△BCD,得到比例線段,從而解答22、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解析】
(1)①先確定出點A,B坐標,再利用待定系數(shù)法即可得出結論;
②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結論;
(2)先確定出B(1,),D(1,),進而求出點P的坐標,再求出A,C坐標,最后用AC=BD,即可得出結論.【詳解】(1)①如圖1,,反比例函數(shù)為,當時,,,當時,,,,設直線的解析式為,,,直線的解析式為;②四邊形是菱形,理由如下:如圖2,由①知,,軸,,點是線段的中點,,當時,由得,,由得,,,,,,四邊形為平行四邊形,,四邊形是菱形;(2)四邊形能是正方形,理由:當四邊形是正方形,記,的交點為,,當時,,,,,,,,,,.【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關鍵.23、(1);(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車發(fā)動機維護與檢修練習題集
- 環(huán)境心理學與生活實例研究題
- 第7課《商場環(huán)境掃描》課件 2024-2025學年嶺南美版初中美術九年級下冊
- 維特根斯坦傳:天才之為責任讀后感
- 預測分析與智能庫存商業(yè)決策的新引擎
- 革新未來新材料科學引領創(chuàng)新浪潮
- 風電與太陽能項目的全方位監(jiān)理實踐指南
- 顧客旅程設計提升購物體驗的關鍵
- 顧客體驗為核心的新零售門店空間設計探索
- 防災減災個人準備指南
- 網(wǎng)絡輿論監(jiān)督存在的問題及對策分析研究行政管理專業(yè)
- T∕CAEPI 31-2021 旋轉(zhuǎn)式沸石吸附濃縮裝置技術要求
- 普佑克四期臨床方案
- 國家級高技能人才培訓基地建設項目實施管理辦法
- 深圳實驗學校小學畢業(yè)班數(shù)學試卷
- 人教精通版小學英語五年級下冊期末測試
- 自動喂料攪拌機
- 上海初中地理會考知識點匯總(上海鄉(xiāng)土地理
- 《合成生物學》課件.ppt
- DFZ-6(改)型復軌器使用說明書
- 企業(yè)職務犯罪法制講座.ppt
評論
0/150
提交評論