2022屆廣西浦北縣中考數學最后沖刺濃縮精華卷含解析_第1頁
2022屆廣西浦北縣中考數學最后沖刺濃縮精華卷含解析_第2頁
2022屆廣西浦北縣中考數學最后沖刺濃縮精華卷含解析_第3頁
2022屆廣西浦北縣中考數學最后沖刺濃縮精華卷含解析_第4頁
2022屆廣西浦北縣中考數學最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,將四根長度相等的細木條首尾相連,用釘子釘成四邊形,轉動這個四邊形,使它形狀改變,當,時,等于()A. B. C. D.2.學校小組名同學的身高(單位:)分別為:,,,,,則這組數據的中位數是().A. B. C. D.3.下列計算正確的是()A.2x+3x=5x B.2x?3x=6x C.(x3)2=5 D.x3﹣x2=x4.關于x的一元二次方程x2+2x+k+1=0的兩個實根x1,x2,滿足x1+x2﹣x1x2<﹣1,則k的取值范圍在數軸上表示為()A. B.C. D.5.實數a在數軸上的位置如圖所示,則化簡后為()A.7 B.﹣7 C.2a﹣15 D.無法確定6.若二次函數的圖像與軸有兩個交點,則實數的取值范圍是()A. B. C. D.7.如果兩圓只有兩條公切線,那么這兩圓的位置關系是()A.內切 B.外切 C.相交 D.外離8.已知x1,x2是關于x的方程x2+ax-2b=0的兩個實數根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-19.小明要去超市買甲、乙兩種糖果,然后混合成5千克混合糖果,已知甲種糖果的單價為a元/千克,乙種糖果的單價為b元/千克,且a>b.根據需要小明列出以下三種混合方案:(單位:千克)甲種糖果乙種糖果混合糖果方案1235方案2325方案32.52.55則最省錢的方案為()A.方案1 B.方案2C.方案3 D.三個方案費用相同10.-4的絕對值是()A.4 B. C.-4 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在矩形ABCD中,AB=4,BC=9,點E是AD邊上一動點,將邊AB沿BE折疊,點A的對應點為A′,若點A′到矩形較長兩對邊的距離之比為1:3,則AE的長為_____.12.如圖,線段AB的長為4,C為AB上一個動點,分別以AC、BC為斜邊在AB的同側作兩個等腰直角三角形ACD和BCE,連結DE,則DE長的最小值是_____.13.現有一張圓心角為108°,半徑為40cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個底面半徑為10cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的圓心角θ為_____.14.在“三角尺拼角”實驗中,小明同學把一副三角尺按如圖所示的方式放置,則∠1=__________°.15.如圖,在?ABCD中,AC是一條對角線,EF∥BC,且EF與AB相交于點E,與AC相交于點F,3AE=2EB,連接DF.若S△AEF=1,則S△ADF的值為_____.16.函數中自變量x的取值范圍是___________.三、解答題(共8題,共72分)17.(8分)小敏參加答題游戲,答對最后兩道單選題就順利通關.第一道單選題有3個選項,,,第二道單選題有4個選項,,,,這兩道題小敏都不會,不過小敏還有一個“求助”機會,使用“求助”可以去掉其中一道題的一個錯誤選項.假設第一道題的正確選項是,第二道題的正確選項是,解答下列問題:(1)如果小敏第一道題不使用“求助”,那么她答對第一道題的概率是________;(2)如果小敏將“求助”留在第二道題使用,用畫樹狀圖或列表的方法,求小敏順利通關的概率;(3)小敏選第________道題(選“一”或“二”)使用“求助”,順利通關的可能性更大.18.(8分)如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的頂點G在菱形對角線AC上運動,角的兩邊分別交邊BC、CD于E、F.(1)如圖甲,當頂點G運動到與點A重合時,求證:EC+CF=BC;(2)知識探究:①如圖乙,當頂點G運動到AC的中點時,請直接寫出線段EC、CF與BC的數量關系(不需要寫出證明過程);②如圖丙,在頂點G運動的過程中,若,探究線段EC、CF與BC的數量關系;(3)問題解決:如圖丙,已知菱形的邊長為8,BG=7,CF=,當>2時,求EC的長度.19.(8分)如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設PA=x.(1)求證:△PFA∽△ABE;(2)當點P在線段AD上運動時,設PA=x,是否存在實數x,使得以點P,F,E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;(3)探究:當以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件:.20.(8分)為了進一步改善環境,鄭州市今年增加了綠色自行車的數量,已知A型號的自行車比B型號的自行車的單價低30元,買8輛A型號的自行車與買7輛B型號的自行車所花費用相同.

(1)A,B兩種型號的自行車的單價分別是多少?

(2)若購買A,B兩種自行車共600輛,且A型號自行車的數量不多于B型號自行車的一半,請你給出一種最省錢的方案,并求出該方案所需要的費用.21.(8分)如圖,AB是⊙O的直徑,BC交⊙O于點D,E是弧的中點,AE與BC交于點F,∠C=2∠EAB.求證:AC是⊙O的切線;已知CD=4,CA=6,求AF的長.22.(10分)列方程解應用題:某商場用8萬元購進一批新款襯衫,上架后很快銷售一空,商場又緊急購進第二批這種襯衫,數量是第一次的2倍,但進價漲了4元/件,結果共用去17.6萬元.該商場第一批購進襯衫多少件?商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?23.(12分)已知拋物線的開口向上頂點為P(1)若P點坐標為(4,一1),求拋物線的解析式;(2)若此拋物線經過(4,一1),當-1≤x≤2時,求y的取值范圍(用含a的代數式表示)(3)若a=1,且當0≤x≤1時,拋物線上的點到x軸距離的最大值為6,求b的值24.在中,,以為直徑的圓交于,交于.過點的切線交的延長線于.求證:是的切線.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

首先連接AC,由將四根長度相等的細木條首尾相連,用釘子釘成四邊形ABCD,AB=1,,易得△ABC是等邊三角形,即可得到答案.【詳解】連接AC,

∵將四根長度相等的細木條首尾相連,用釘子釘成四邊形ABCD,

∴AB=BC,

∵,

∴△ABC是等邊三角形,

∴AC=AB=1.

故選:B.【點睛】本題考點:菱形的性質.2、C【解析】

根據中位數的定義進行解答【詳解】將5名同學的身高按從高到矮的順序排列:159、156、152、151、147,因此這組數據的中位數是152.故選C.【點睛】本題主要考查中位數,解題的關鍵是熟練掌握中位數的定義:一組數據按從小到大(或從大到小)的順序依次排列,處在中間位置的一個數(或最中間兩個數據的平均數)稱為中位數.3、A【解析】

依據合并同類項法則、單項式乘單項式法則、積的乘方法則進行判斷即可.【詳解】A、2x+3x=5x,故A正確;B、2x?3x=6x2,故B錯誤;C、(x3)2=x6,故C錯誤;D、x3與x2不是同類項,不能合并,故D錯誤.故選A.【點睛】本題主要考查的是整式的運算,熟練掌握相關法則是解題的關鍵.4、D【解析】試題分析:根據根的判別式和根與系數的關系列出不等式,求出解集.解:∵關于x的一元二次方程x2+2x+k+1=0有兩個實根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1?x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式組的解集為﹣2<k≤0,在數軸上表示為:,故選D.點評:本題考查了根的判別式、根與系數的關系,在數軸上找到公共部分是解題的關鍵.5、C【解析】

根據數軸上點的位置判斷出a﹣4與a﹣11的正負,原式利用二次根式性質及絕對值的代數意義化簡,去括號合并即可得到結果.【詳解】解:根據數軸上點的位置得:5<a<10,∴a﹣4>0,a﹣11<0,則原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故選:C.【點睛】此題考查了二次根式的性質與化簡,以及實數與數軸,熟練掌握運算法則是解本題的關鍵.6、D【解析】

由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關鍵.7、C【解析】

兩圓內含時,無公切線;兩圓內切時,只有一條公切線;兩圓外離時,有4條公切線;兩圓外切時,有3條公切線;兩圓相交時,有2條公切線.【詳解】根據兩圓相交時才有2條公切線.故選C.【點睛】本題考查了圓與圓的位置關系.熟悉兩圓的不同位置關系中的外公切線和內公切線的條數.8、A【解析】

根據根與系數的關系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關于x的方程x2+ax﹣2b=0的兩實數根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.9、A【解析】

求出三種方案混合糖果的單價,比較后即可得出結論.【詳解】方案1混合糖果的單價為,方案2混合糖果的單價為,方案3混合糖果的單價為.∵a>b,∴,∴方案1最省錢.故選:A.【點睛】本題考查了加權平均數,求出各方案混合糖果的單價是解題的關鍵.10、A【解析】

根據絕對值的概念計算即可.(絕對值是指一個數在坐標軸上所對應點到原點的距離叫做這個數的絕對值.)【詳解】根據絕對值的概念可得-4的絕對值為4.【點睛】錯因分析:容易題.選錯的原因是對實數的相關概念沒有掌握,與倒數、相反數的概念混淆.二、填空題(本大題共6個小題,每小題3分,共18分)11、或【解析】

由,,得,所以.再以①和②兩種情況分類討論即可得出答案.【詳解】因為翻折,所以,,過作,交AD于F,交BC于G,根據題意,,.若點在矩形ABCD的內部時,如圖則GF=AB=4,由可知.又..又....若則,..則...若則,..則...故答案或.【點睛】本題主要考查了翻折問題和相似三角形判定,靈活運用是關鍵錯因分析:難題,失分原因有3點:(1)不能靈活運用矩形和折疊與動點問題疊的性質;(2)沒有分情況討論,由于點A′A′到矩形較長兩對邊的距離之比為1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1這兩種情況;(3)不能根據相似三角形對應邊成比例求出三角形的邊長.12、2【解析】試題分析:由題意得,DE=CD2+CE2;C為AB上一個動點,分別以AC、BC為斜邊在AB的同側作兩個等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得AC2=AD2+CD2考點:不等式的性質點評:本題考查不等式的性質,會用勾股定理,完全平方公式,不等關系等知識,它們是解決本題的關鍵13、18°【解析】試題分析:根據圓錐的展開圖的圓心角計算法則可得:扇形的圓心角=1040考點:圓錐的展開圖14、1【解析】試題分析:由三角形的外角的性質可知,∠1=90°+30°=1°,故答案為1.考點:三角形的外角性質;三角形內角和定理.15、5【解析】

由3AE=2EB,和EF∥BC,證明△AEF∽△ABC,得S△AEFS△ABC=425,結合S△AEF=1,可知S△ADC=S△ABC=254,再由AFFC【詳解】解:∵3AE=2EB,設AE=2a,BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴S△AEFS△ABC=(AEAB)2=(∵S△AEF=1,∴S△ABC=254∵四邊形ABCD為平行四邊形,∴S∵EF∥BC,∴AFFC=AEBE=2a∴S△ADFS△CDF∴S△ADF=25S△ADC=5故答案是:5【點睛】本題考查了圖形的相似和平行線分線段成比例定理,中等難度,找到相似比是解題關鍵.16、x≤2【解析】試題解析:根據題意得:解得:.三、解答題(共8題,共72分)17、(1);(2);(3)一.【解析】

(1)直接利用概率公式求解;

(2)畫樹狀圖(用Z表示正確選項,C表示錯誤選項)展示所有9種等可能的結果數,找出小敏順利通關的結果數,然后根據概率公式計算出小敏順利通關的概率;

(3)與(2)方法一樣求出小穎將“求助”留在第一道題使用,小敏順利通關的概率,然后比較兩個概率的大小可判斷小敏在答第幾道題時使用“求助”.【詳解】解:(1)若小敏第一道題不使用“求助”,那么小敏答對第一道題的概率=;

故答案為;

(2)若小敏將“求助”留在第二道題使用,那么小敏順利通關的概率是.理由如下:

畫樹狀圖為:(用Z表示正確選項,C表示錯誤選項)

共有9種等可能的結果數,其中小穎順利通關的結果數為1,

所以小敏順利通關的概率=;

(3)若小敏將“求助”留在第一道題使用,畫樹狀圖為:(用Z表示正確選項,C表示錯誤選項)

共有8種等可能的結果數,其中小敏順利通關的結果數為1,所以小敏將“求助”留在第一道題使用,小敏順利通關的概率=,

由于>,

所以建議小敏在答第一道題時使用“求助”.【點睛】本題考查了用畫樹狀圖的方法求概率,掌握其畫法是解題的關鍵.18、(1)證明見解析(2)①線段EC,CF與BC的數量關系為:CE+CF=BC.②CE+CF=BC(3)【解析】

(1)利用包含60°角的菱形,證明△BAE≌△CAF,可求證;(2)由特殊到一般,證明△CAE′∽△CGE,從而可以得到EC、CF與BC的數量關系(3)連接BD與AC交于點H,利用三角函數BH,AH,CH的長度,最后求BC長度.【詳解】解:(1)證明:∵四邊形ABCD是菱形,∠BAD=120°,∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,∵∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF,∴EC+CF=EC+BE=BC,即EC+CF=BC;(2)知識探究:①線段EC,CF與BC的數量關系為:CE+CF=BC.理由:如圖乙,過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.

類比(1)可得:E′C+CF′=BC,

∵AE′∥EG,

∴△CAE′∽△CGE,,同理可得:,,即;②CE+CF=BC.理由如下:過點A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.類比(1)可得:E′C+CF′=BC,∵AE′∥EG,∴△CAE′∽△CAE,∴,∴CE=CE′,同理可得:CF=CF′,∴CE+CF=CE′+CF′=(CE′+CF′)=BC,即CE+CF=BC;(3)連接BD與AC交于點H,如圖所示:在Rt△ABH中,∵AB=8,∠BAC=60°,∴BH=ABsin60°=8×=,AH=CH=ABcos60°=8×=4,∴GH===1,∴CG=4-1=3,∴,∴t=(t>2),由(2)②得:CE+CF=BC,∴CE=BC-CF=×8-=.【點睛】本題屬于相似形綜合題,主要考查了全等三角形的判定和性質、菱形的性質,相似三角形的判定和性質等知識的綜合運用,解題的關鍵是靈活運用這些知識解決問題,學會添加輔助線構造相似三角形.19、(1)證明見解析;(2)3或.(3)或0<【解析】

(1)根據矩形的性質,結合已知條件可以證明兩個角對應相等,從而證明三角形相似;

(2)由于對應關系不確定,所以應針對不同的對應關系分情況考慮:當時,則得到四邊形為矩形,從而求得的值;當時,再結合(1)中的結論,得到等腰.再根據等腰三角形的三線合一得到是的中點,運用勾股定理和相似三角形的性質進行求解.

(3)此題首先應針對點的位置分為兩種大情況:①與AE相切,②與線段只有一個公共點,不一定必須相切,只要保證和線段只有一個公共點即可.故求得相切時的情況和相交,但其中一個交點在線段外的情況即是的取值范圍.【詳解】(1)證明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情況1,當△EFP∽△ABE,且∠PEF=∠EAB時,則有PE∥AB∴四邊形ABEP為矩形,∴PA=EB=3,即x=3.情況2,當△PFE∽△ABE,且∠PEF=∠AEB時,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴點F為AE的中點,即∴滿足條件的x的值為3或(3)或【點睛】兩組角對應相等,兩三角形相似.20、(1)A型自行車的單價為210元,B型自行車的單價為240元.(2)最省錢的方案是購買A型自行車200輛,B型自行車的400輛,總費用為138000元.【解析】分析:(1)設A型自行車的單價為x元,B型自行車的單價為y元,構建方程組即可解決問題.(2)設購買A型自行車a輛,B型自行車的(600-a)輛.總費用為w元.構建一次函數,利用一次函數的性質即可解決問題.詳解:(1)設A型自行車的單價為x元,B型自行車的單價為y元,

由題意,

解得,

型自行車的單價為210元,B型自行車的單價為240元.

(2)設購買A型自行車a輛,B型自行車的輛.總費用為w元.

由題意,

,

隨a的增大而減小,

,

,

∴當時,w有最小值,最小值,

∴最省錢的方案是購買A型自行車200輛,B型自行車的400輛,總費用為138000元.點睛:本題考查一次函數的應用,二元一次方程組的應用等知識,解題的關鍵是學會設未知數,構建方程組或一次函數解決實際問題,屬于中考常考題型.21、(1)證明見解析(2)2【解析】

(1)連結AD,如圖,根據圓周角定理,由E是的中點得到由于則,再利用圓周角定理得到則所以于是根據切線的判定定理得到AC是⊙O的切線;先求出的長,用勾股定理即可求出.【詳解】解:(1)證明:連結AD,如圖,∵E是的中點,∴∵∴∵AB是⊙O的直徑,∴∴∴即∴AC是⊙O的切線;(2)∵∴∵,∴【點睛】本題考查切線的判定與性質,圓周角定理,屬于圓的綜合題,注意切線的證明方法,是高頻考點.22、(1)2000件;(2)90260元.【解析】

(1)設該商場第一批購進襯衫x件,則第二批購進襯衫2x件,根據單價=總價÷數量結合第二批比第一批的進價漲了4元/件,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)用(1)的結論×2可求出第二批購進該種襯衫的數量,再利用總利潤=銷售收入-成本,即可得出結論.【詳解】解:(1)設該商場第一批購進襯衫x件,則第二批購進襯衫2x件,根據題意得:-=4,解得:x=2000,經檢驗,x=2000是所列分式方程的解,且符合題意.答:商場第一批購進襯衫2000件.(2)2000×2=4000(件),(2000+4000-150)×58+150×58×0.8-80000-176000=90260(元).答:售完這兩批襯衫,商場共盈利90260元.【點睛】本題考查了分式方程的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據數量關系,列式計算.23、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】

(1)將P(4,-1)代入,可求出解析式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論