2023屆安徽省合肥二中學內地西藏班(校)下學期初三年級9月月考試卷數學試題試卷含解析_第1頁
2023屆安徽省合肥二中學內地西藏班(校)下學期初三年級9月月考試卷數學試題試卷含解析_第2頁
2023屆安徽省合肥二中學內地西藏班(校)下學期初三年級9月月考試卷數學試題試卷含解析_第3頁
2023屆安徽省合肥二中學內地西藏班(校)下學期初三年級9月月考試卷數學試題試卷含解析_第4頁
2023屆安徽省合肥二中學內地西藏班(校)下學期初三年級9月月考試卷數學試題試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆安徽省合肥二中學內地西藏班(校)下學期初三年級9月月考試卷數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正確的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤2.4的平方根是()A.4 B.±4 C.±2 D.23.運用乘法公式計算(4+x)(4﹣x)的結果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x24.如圖,矩形ABCD的對角線AC,BD相交于點O,點M是AB的中點,若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.105.在同一直角坐標系中,二次函數y=x2與反比例函數y=1x(x>0)的圖象如圖所示,若兩個函數圖象上有三個不同的點A(x1,m),B(x2,m),C(x3,m),其中m為常數,令ω=x1+x2+x3A.1B.mC.m2D.16.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.67.在△ABC中,∠C=90°,AC=9,sinB=,則AB=(

)A.15

B.12

C.9

D.68.2019年4月份,某市市區一周空氣質量報告中某項污染指數的數據是:31,35,31,34,30,32,31,這組數據的中位數、眾數分別是()A.32,31 B.31,32 C.31,31 D.32,359.一次函數的圖像不經過的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.周末小麗從家里出發騎單車去公園,因為她家與公園之間是一條筆直的自行車道,所以小麗騎得特別放松.途中,她在路邊的便利店挑選一瓶礦泉水,耽誤了一段時間后繼續騎行,愉快地到了公園.圖中描述了小麗路上的情景,下列說法中錯誤的是()A.小麗從家到達公園共用時間20分鐘 B.公園離小麗家的距離為2000米C.小麗在便利店時間為15分鐘 D.便利店離小麗家的距離為1000米二、填空題(本大題共6個小題,每小題3分,共18分)11.方程的解是__________.12.正十二邊形每個內角的度數為.13.計算:(+)=_____.14.若代數式在實數范圍內有意義,則x的取值范圍是_______.15.有下列各式:①;②;③;④.其中,計算結果為分式的是_____.(填序號)16.反比例函數的圖象經過點和,則______.三、解答題(共8題,共72分)17.(8分)如圖,拋物線與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=–1,P為拋物線上第二象限的一個動點.(1)求拋物線的解析式并寫出其頂點坐標;(2)當點P的縱坐標為2時,求點P的橫坐標;(3)當點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標.18.(8分)在眉山市櫻花節期間,岷江二橋一端的空地上有一塊矩形的標語牌ABCD(如圖).已知標語牌的高AB=5m,在地面的點E處,測得標語牌點A的仰角為30°,在地面的點F處,測得標語牌點A的仰角為75°,且點E,F,B,C在同一直線上,求點E與點F之間的距離.(計算結果精確到0.1m,參考數據:≈1.41,≈1.73)19.(8分)某中學為了了解在校學生對校本課程的喜愛情況,隨機調查了部分學生對五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據調查結果繪制了如下的兩個不完整統計圖.請根據圖中所提供的信息,完成下列問題:(1)本次被調查的學生的人數為;(2)補全條形統計圖(3)扇形統計圖中,類所在扇形的圓心角的度數為;(4)若該中學有2000名學生,請估計該校最喜愛兩類校本課程的學生約共有多少名.20.(8分)今年5月份,某校九年級學生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學的中考體育情況,對全班學生的中考體育成績進行了統計,并繪制以下不完整的頻數分布表(圖11-1)和扇形統計圖(圖11-2),根據圖表中的信息解答下列問題:分組

分數段(分)

頻數

A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學生人數和m的值;(2)直接學出該班學生的中考體育成績的中位數落在哪個分數段;(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現需從這3人中隨機選取2人到八年級進行經驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.21.(8分)如圖,在一個平臺遠處有一座古塔,小明在平臺底部的點C處測得古塔頂部B的仰角為60°,在平臺上的點E處測得古塔頂部的仰角為30°.已知平臺的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結果保留根號)22.(10分)(1)計算:(1﹣)0﹣|﹣2|+;(2)如圖,在等邊三角形ABC中,點D,E分別是邊BC,AC的中點,過點E作EF⊥DE,交BC的延長線于點F,求∠F的度數.23.(12分)在△ABC中,AB=AC,∠BAC=α,點P是△ABC內一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關系.(1)當α=60°時,將△ABP繞點A逆時針旋轉60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關系為;(2)如圖2,當α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關系,并給出證明;(3)PA、PB、PC滿足的等量關系為.24.向陽中學校園內有一條林萌道叫“勤學路”,道路兩邊有如圖所示的路燈(在鉛垂面內的示意圖),燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區域DE的長為13.3米,從D、E兩處測得路燈A的仰角分別為α和45°,且tanα=1.求燈桿AB的長度.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據實數的運算法則即可一一判斷求解.【詳解】①有理數的0次冪,當a=0時,a0=0;②為同底數冪相乘,底數不變,指數相加,正確;③中2–2=,原式錯誤;④為有理數的混合運算,正確;⑤為合并同類項,正確.故選D.2、C【解析】

根據平方根的定義,求數a的平方根,也就是求一個數x,使得x1=a,則x就是a的平方根,由此即可解決問題.【詳解】∵(±1)1=4,∴4的平方根是±1.故選D.【點睛】本題考查了平方根的定義.注意一個正數有兩個平方根,它們互為相反數;0的平方根是0;負數沒有平方根.3、B【解析】

根據平方差公式計算即可得解.【詳解】,故選:B.【點睛】本題主要考查了整式的乘法公式,熟練掌握平方差公式的運算是解決本題的關鍵.4、D【解析】

利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點O,

∴∠BAD=90°,點O是線段BD的中點,

∵點M是AB的中點,

∴OM是△ABD的中位線,

∴AD=2OM=1.

∴在直角△ABD中,由勾股定理知:BD=.

故選:D.【點睛】本題考查了三角形中位線定理和矩形的性質,利用三角形中位線定理求得AD的長度是解題的關鍵.5、D【解析】

本題主要考察二次函數與反比例函數的圖像和性質.【詳解】令二次函數中y=m.即x2=m,解得x=m或x=-m.令反比例函數中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+【點睛】巧妙借助三點縱坐標相同的條件建立起兩個函數之間的聯系,從而解答.6、B【解析】

根據已知方程得到y=-1x+6,將其代入所求的代數式后得到:xy=-1x2+6x,利用配方法求該式的最值.【詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【點睛】考查了二次函數的最值,解題時,利用配方法和非負數的性質求得xy的最大值.7、A【解析】

根據三角函數的定義直接求解.【詳解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故選A8、C【解析】分析:找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不只一個.解答:解:從小到大排列此數據為:30、1、1、1、32、34、35,數據1出現了三次最多為眾數,1處在第4位為中位數.所以本題這組數據的中位數是1,眾數是1.故選C.9、C【解析】試題分析:根據一次函數y=kx+b(k≠0,k、b為常數)的圖像與性質可知:當k>0,b>0時,圖像過一二三象限;當k>0,b<0時,圖像過一三四象限;當k<0,b>0時,圖像過一二四象限;當k<0,b<0,圖像過二三四象限.這個一次函數的k=<0與b=1>0,因此不經過第三象限.答案為C考點:一次函數的圖像10、C【解析】解:A.小麗從家到達公園共用時間20分鐘,正確;B.公園離小麗家的距離為2000米,正確;C.小麗在便利店時間為15﹣10=5分鐘,錯誤;D.便利店離小麗家的距離為1000米,正確.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、x=1【解析】

將方程兩邊平方后求解,注意檢驗.【詳解】將方程兩邊平方得x-3=4,移項得:x=1,代入原方程得=2,原方程成立,故方程=2的解是x=1.故本題答案為:x=1.【點睛】在解無理方程是最常用的方法是兩邊平方法及換元法,解得答案時一定要注意代入原方程檢驗.12、【解析】

首先求得每個外角的度數,然后根據外角與相鄰的內角互為鄰補角即可求解.【詳解】試題分析:正十二邊形的每個外角的度數是:=30°,則每一個內角的度數是:180°﹣30°=150°.故答案為150°.13、1.【解析】

去括號后得到答案.【詳解】原式=×+×=2+1=1,故答案為1.【點睛】本題主要考查了去括號的概念,解本題的要點在于二次根式的運算.14、【解析】先根據二次根式有意義的條件列出關于x的不等式,求出x的取值范圍即可.解:∵在實數范圍內有意義,∴x-1≥2,解得x≥1.故答案為x≥1.本題考查的是二次根式有意義的條件,即被開方數大于等于2.15、②④【解析】

根據分式的定義,將每個式子計算后,即可求解.【詳解】=1不是分式,=,=3不是分式,=故選②④.【點睛】本題考查分式的判斷,解題的關鍵是清楚分式的定義.16、-1【解析】

先把點(1,6)代入反比例函數y=,求出k的值,進而可得出反比例函數的解析式,再把點(m,-3)代入即可得出m的值.【詳解】解:∵反比例函數y=的圖象經過點(1,6),∴6=,解得k=6,∴反比例函數的解析式為y=.∵點(m,-3)在此函數圖象上上,∴-3=,解得m=-1.故答案為-1.【點睛】本題考查的是反比例函數圖象上點的坐標特點,熟知反比例函數圖象上各點的坐標一定適合此函數的解析式是解答此題的關鍵.三、解答題(共8題,共72分)17、(1)二次函數的解析式為,頂點坐標為(–1,4);(2)點P橫坐標為––1;(3)當時,四邊形PABC的面積有最大值,點P().【解析】試題分析:(1)已知拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線的解析式,把解析式化為頂點式,直接寫出頂點坐標即可;(2)把y=2代入解析式,解方程求得x的值,即可得點P的橫坐標,從而求得點P的坐標;(3)設點P(,),則,根據得出四邊形PABC與x之間的函數關系式,利用二次函數的性質求得x的值,即可求得點P的坐標.試題解析:(1)∵拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,∴,解得:,∴二次函數的解析式為=,∴頂點坐標為(﹣1,4)(2)設點P(,2),即=2,解得=﹣1(舍去)或=﹣﹣1,∴點P(﹣﹣1,2).(3)設點P(,),則,,∴=∴當時,四邊形PABC的面積有最大值.所以點P().點睛:本題是二次函數綜合題,主要考查學生對二次函數解決動點問題綜合運用能力,動點問題為中考??碱}型,注意培養數形結合思想,培養綜合分析歸納能力,解決這類問題要會建立二次函數模型,利用二次函數的性質解決問題.18、7.3米【解析】

:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=45°,推出AH=HF,設AH=HF=x,則EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x=10,解方程即可.【詳解】解:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=45°,∴AH=HF,設AH=HF=x,則EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E與點F之間的距離為7.3米【點睛】本題考查的知識點是解直角三角形的應用-仰角俯角問題,解題的關鍵是熟練的掌握解直角三角形的應用-仰角俯角問題.19、(1)300;(2)見解析;(3)108°;(4)約有840名.【解析】

(1)根據A種類人數及其占總人數百分比可得答案;

(2)用總人數乘以B的百分比得出其人數,即可補全條形圖;

(3)用360°乘以C類人數占總人數的比例可得;

(4)總人數乘以C、D兩類人數占樣本的比例可得答案.【詳解】解:(1)本次被調查的學生的人數為69÷23%=300(人),

故答案為:300;

(2)喜歡B類校本課程的人數為300×20%=60(人),

補全條形圖如下:

(3)扇形統計圖中,C類所在扇形的圓心角的度數為360°×=108°,

故答案為:108°;

(4)∵2000×=840,

∴估計該校喜愛C,D兩類校本課程的學生共有840名.【點睛】本題考查條形統計圖、扇形統計圖的綜合運用.讀懂統計圖,從統計圖中得到必要的信息是解題關鍵.條形統計圖能清楚地表示出每個項目的數據.20、(1)50,18;(2)中位數落在51﹣56分數段;(3).【解析】

(1)利用C分數段所占比例以及其頻數求出總數即可,進而得出m的值;(2)利用中位數的定義得出中位數的位置;(3)利用列表或畫樹狀圖列舉出所有的可能,再根據概率公式計算即可得解.【詳解】解:(1)由題意可得:全班學生人數:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班學生人數:50人,∴第25和第26個數據的平均數是中位數,∴中位數落在51﹣56分數段;(3)如圖所示:將男生分別標記為A1,A2,女生標記為B1

A1

A2

B1

A1

(A1,A2)

(A1,B1)

A2

(A2,A1)

(A2,B1)

B1

(B1,A1)

(B1,A2)

P(一男一女).【點睛】本題考查列表法與樹狀圖法,頻數(率)分布表,扇形統計圖,中位數.21、古塔AB的高為(10+2)米.【解析】試題分析:延長EF交AB于點G.利用AB表示出EG,AC.讓EG-AC=1即可求得AB長.試題解析:如圖,延長EF交AB于點G.設AB=x米,則BG=AB﹣2=(x﹣2)米.則EG=(AB﹣2)÷tan∠BEG=(x﹣2),CA=AB÷tan∠ACB=x.則CD=EG﹣AC=(x﹣2)﹣x=1.解可得:x=10+2.答:古塔AB的高為(10+2)米.22、(1)﹣1+3;(2)30°.【解析】

(1)根據零指數冪、絕對值、二次根式的性質求出每一部分的值,代入求出即可;(2)根據平行線的性質可得∠EDC=∠B=,根據三角形內角和定理即可求解;【詳解】解:(1)原式=1﹣2+3=﹣1+3;(2)∵△ABC是等邊三角形,∴∠B=60°,∵點D,E分別是邊BC,AC的中點,∴DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°.【點睛】(1)主要考查零指數冪、絕對值、二次根式的性質;(2)考查平行線的性質和三角形內角和定理.23、(1)150,(1)證明見解析(3)【解析】

(1)根據旋轉變換的性質得到△PAP′為等邊三角形,得到∠P′PC=90°,根據勾股定理解答即可;(1)如圖1,作將△ABP繞點A逆時針旋轉110°得到△ACP′,連接PP′,作AD⊥PP′于D,根據余弦的定義得到PP′=PA,根據勾股定理解答即可;(3)與(1)類似,根據旋轉變換的性質、勾股定理和余弦、正弦的關系計算即可.試題解析:【詳解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋轉變換的性質可知,∠PAP′=60°,P′C=PB,∴△PAP′為等邊三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案為150,PA1+PC1=PB1;(1)如圖,作°,使,連接,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論