2022-2023學年黑龍江省黑河市三縣初三第6次月考數(shù)學試題含解析_第1頁
2022-2023學年黑龍江省黑河市三縣初三第6次月考數(shù)學試題含解析_第2頁
2022-2023學年黑龍江省黑河市三縣初三第6次月考數(shù)學試題含解析_第3頁
2022-2023學年黑龍江省黑河市三縣初三第6次月考數(shù)學試題含解析_第4頁
2022-2023學年黑龍江省黑河市三縣初三第6次月考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年黑龍江省黑河市三縣初三第6次月考數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,將邊長為3a的正方形沿虛線剪成兩塊正方形和兩塊長方形.若拿掉邊長2b的小正方形后,再將剩下的三塊拼成一塊矩形,則這塊矩形較長的邊長為()A.3a+2b B.3a+4b C.6a+2b D.6a+4b2.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.有一個實數(shù)根 D.無實數(shù)根3.由若干個相同的小立方體搭成的幾何體的三視圖如圖所示,則搭成這個幾何體的小立方體的個數(shù)是()A.3 B.4 C.5 D.64.在平面直角坐標系中,將點P(4,﹣3)繞原點旋轉(zhuǎn)90°得到P1,則P1的坐標為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)5.等腰中,,D是AC的中點,于E,交BA的延長線于F,若,則的面積為()A.40 B.46 C.48 D.506.扇形的半徑為30cm,圓心角為120°,用它做成一個圓錐的側(cè)面,則圓錐底面半徑為()A.10cm B.20cm C.10πcm D.20πcm7.下列說法中正確的是()A.檢測一批燈泡的使用壽命適宜用普查.B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就一定有5次正面朝上.C.“367人中有兩人是同月同日生”為必然事件.D.“多邊形內(nèi)角和與外角和相等”是不可能事件.8.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣19.如圖,在平面直角坐標系中,△ABC位于第二象限,點B的坐標是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關于于x軸對稱的△A2B2C2,則點B的對應點B2的坐標是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)10.如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點E、F、G、H分別為邊AD、AB、BC、CD的中點.若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.6011.sin60°的值為()A. B. C. D.12.已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE,過點A作AE的垂線交DE于點P,若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一個不透明的袋子中裝有5個球,其中3個紅球、2個黑球,這些球除顏色外無其它差別,現(xiàn)從袋子中隨機摸出一個球,則它是黑球的概率是_____.14.27的立方根為.15.二次函數(shù)y=(x﹣2m)2+1,當m<x<m+1時,y隨x的增大而減小,則m的取值范圍是_____.16.將多項式xy2﹣4xy+4y因式分解:_____.17.已知拋物線開口向上且經(jīng)過點,雙曲線經(jīng)過點,給出下列結論:;;,c是關于x的一元二次方程的兩個實數(shù)根;其中正確結論是______填寫序號18.如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標系中,△ABC的頂點坐標是A(﹣2,3),B(﹣4,﹣1),C(2,0).點P(m,n)為△ABC內(nèi)一點,平移△ABC得到△A1B1C1,使點P(m,n)移到P(m+6,n+1)處.(1)畫出△A1B1C1(2)將△ABC繞坐標點C逆時針旋轉(zhuǎn)90°得到△A2B2C,畫出△A2B2C;(3)在(2)的條件下求BC掃過的面積.20.(6分)如圖,AB為⊙O直徑,過⊙O外的點D作DE⊥OA于點E,射線DC切⊙O于點C、交AB的延長線于點P,連接AC交DE于點F,作CH⊥AB于點H.(1)求證:∠D=2∠A;(2)若HB=2,cosD=,請求出AC的長.21.(6分)數(shù)學課上,李老師和同學們做一個游戲:他在三張硬紙片上分別寫出一個代數(shù)式,背面分別標上序號①、②、③,擺成如圖所示的一個等式,然后翻開紙片②是4x1+5x+6,翻開紙片③是3x1﹣x﹣1.解答下列問題求紙片①上的代數(shù)式;若x是方程1x=﹣x﹣9的解,求紙片①上代數(shù)式的值.22.(8分)“食品安全”受到全社會的廣泛關注,濟南市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為;(2)請補全條形統(tǒng)計圖;(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù);(4)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.23.(8分)當前,“精準扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學七年級共有四個班,已“建檔立卡”的貧困家庭的學生人數(shù)按一、二、三、四班分別記為A1,A2,A3,A4,現(xiàn)對A1,A2,A3,A4統(tǒng)計后,制成如圖所示的統(tǒng)計圖.(1)求七年級已“建檔立卡”的貧困家庭的學生總?cè)藬?shù);(2)將條形統(tǒng)計圖補充完整,并求出A1所在扇形的圓心角的度數(shù);(3)現(xiàn)從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.24.(10分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯(lián)結AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯(lián)結EF.(1)當CM:CB=1:4時,求CF的長.(2)設CM=x,CE=y,求y關于x的函數(shù)關系式,并寫出定義域.(3)當△ABM∽△EFN時,求CM的長.25.(10分)數(shù)學興趣小組為了解我校初三年級1800名學生的身體健康情況,從初三隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.補全條形統(tǒng)計圖,并估計我校初三年級體重介于47kg至53kg的學生大約有多少名.26.(12分)如圖,在矩形ABCD中,AB=4,BC=6,M是BC的中點,DE⊥AM于點E.求證:△ADE∽△MAB;求DE的長.27.(12分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯(lián)結BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯(lián)結BC并延長交半徑OM于點A,設OA=x,∠COM的正切值為y.(1)如圖2,當AB⊥OM時,求證:AM=AC;(2)求y關于x的函數(shù)關系式,并寫出定義域;(3)當△OAC為等腰三角形時,求x的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據(jù)這塊矩形較長的邊長=邊長為3a的正方形的邊長-邊長為2b的小正方形的邊長+邊長為2b的小正方形的邊長的2倍代入數(shù)據(jù)即可.【詳解】依題意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故這塊矩形較長的邊長為3a+2b.故選A.【點睛】本題主要考查矩形、正方形和整式的運算,熟讀題目,理解題意,清楚題中的等量關系是解答本題的關鍵.2、B【解析】一元二次方程的根的情況與根的判別式有關,,方程有兩個不相等的實數(shù)根,故選B3、B【解析】分析:從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).解答:解:從主視圖看第一列兩個正方體,說明俯視圖中的左邊一列有兩個正方體,主視圖右邊的一列只有一行,說明俯視圖中的右邊一行只有一列,所以此幾何體共有四個正方體.故選B.4、A【解析】

分順時針旋轉(zhuǎn),逆時針旋轉(zhuǎn)兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉(zhuǎn)可得P′(3,4),P″(?3,?4),故選A.【點睛】本題考查坐標與圖形變換——旋轉(zhuǎn),解題的關鍵是利用空間想象能力.5、C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D為AC中點,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=×BF×AC=×12×8=48,故選C.6、A【解析】試題解析:扇形的弧長為:=20πcm,∴圓錐底面半徑為20π÷2π=10cm,故選A.考點:圓錐的計算.7、C【解析】【分析】根據(jù)相關的定義(調(diào)查方式,概率,可能事件,必然事件)進行分析即可.【詳解】A.檢測一批燈泡的使用壽命不適宜用普查,因為有破壞性;B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就可能有5次正面朝上,因為這是隨機事件;C.“367人中有兩人是同月同日生”為必然事件.因為一年只有365天或366天,所以367人中至少有兩個日子相同;D.“多邊形內(nèi)角和與外角和相等”是可能事件.如四邊形內(nèi)角和和外角和相等.故正確選項為:C【點睛】本題考核知識點:對(調(diào)查方式,概率,可能事件,必然事件)理解.解題關鍵:理解相關概念,合理運用舉反例法.8、A【解析】

根據(jù)絕對值和數(shù)的0次冪的概念作答即可.【詳解】原式=1+1=2故答案為:A.【點睛】本題考查的知識點是絕對值和數(shù)的0次冪,解題關鍵是熟記數(shù)的0次冪為1.9、D【解析】

首先利用平移的性質(zhì)得到△A1B1C1中點B的對應點B1坐標,進而利用關于x軸對稱點的性質(zhì)得到△A2B2C2中B2的坐標,即可得出答案.【詳解】解:把△ABC向右平移4個單位長度得到△A1B1C1,此時點B(-5,2)的對應點B1坐標為(-1,2),則與△A1B1C1關于于x軸對稱的△A2B2C2中B2的坐標為(-1,-2),故選D.【點睛】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關鍵.10、B【解析】

有一個角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據(jù)矩形的面積公式解答即可.【詳解】∵點E、F分別為四邊形ABCD的邊AD、AB的中點,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,F(xiàn)G∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.【點睛】本題考查的是中點四邊形.解題時,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個角是直角的平行四邊形是矩形;(2)有三個角是直角的四邊形是矩形;(1)對角線互相平分且相等的四邊形是矩形.11、B【解析】解:sin60°=.故選B.12、D【解析】

①首先利用已知條件根據(jù)邊角邊可以證明△APD≌△AEB;

②由①可得∠BEP=90°,故BE不垂直于AE過點B作BF⊥AE延長線于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直線AE距離為BF=,故②是錯誤的;

③利用全等三角形的性質(zhì)和對頂角相等即可判定③說法正確;

④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知條件計算即可判定;

⑤連接BD,根據(jù)三角形的面積公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【詳解】由邊角邊定理易知△APD≌△AEB,故①正確;

由△APD≌△AEB得,∠AEP=∠APE=45°,從而∠APD=∠AEB=135°,

所以∠BEP=90°,

過B作BF⊥AE,交AE的延長線于F,則BF的長是點B到直線AE的距離,

在△AEP中,由勾股定理得PE=,

在△BEP中,PB=,PE=,由勾股定理得:BE=,

∵∠PAE=∠PEB=∠EFB=90°,AE=AP,

∴∠AEP=45°,

∴∠BEF=180°-45°-90°=45°,

∴∠EBF=45°,

∴EF=BF,

在△EFB中,由勾股定理得:EF=BF=,

故②是錯誤的;

因為△APD≌△AEB,所以∠ADP=∠ABE,而對頂角相等,所以③是正確的;

由△APD≌△AEB,

∴PD=BE=,

可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是錯誤的;

連接BD,則S△BPD=PD×BE=,

所以S△ABD=S△APD+S△APB+S△BPD=2+,

所以S正方形ABCD=2S△ABD=4+.

綜上可知,正確的有①③⑤.故選D.【點睛】考查了正方形的性質(zhì)、全等三角形的性質(zhì)與判定、三角形的面積及勾股定理,綜合性比較強,解題時要求熟練掌握相關的基礎知識才能很好解決問題.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

用黑球的個數(shù)除以總球的個數(shù)即可得出黑球的概率.【詳解】解:∵袋子中共有5個球,有2個黑球,∴從袋子中隨機摸出一個球,它是黑球的概率為;故答案為.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.14、1【解析】找到立方等于27的數(shù)即可.解:∵11=27,∴27的立方根是1,故答案為1.考查了求一個數(shù)的立方根,用到的知識點為:開方與乘方互為逆運算15、m>1【解析】由條件可知二次函數(shù)對稱軸為x=2m,且開口向上,由二次函數(shù)的性質(zhì)可知在對稱軸的左側(cè)時y隨x的增大而減小,可求得m+1<2m,即m>1.故答案為m>1.點睛:本題主要考查二次函數(shù)的性質(zhì),掌握當拋物線開口向下時,在對稱軸右側(cè)y隨x的增大而減小是解題的關鍵.16、y(xy﹣4x+4)【解析】

直接提公因式y(tǒng)即可解答.【詳解】xy2﹣4xy+4y=y(xy﹣4x+4).故答案為:y(xy﹣4x+4).【點睛】本題考查了因式分解——提公因式法,確定多項式xy2﹣4xy+4y的公因式為y是解決問題的關鍵.17、①③【解析】試題解析:∵拋物線開口向上且經(jīng)過點(1,1),雙曲線經(jīng)過點(a,bc),∴,∴bc>0,故①正確;∴a>1時,則b、c均小于0,此時b+c<0,當a=1時,b+c=0,則與題意矛盾,當0<a<1時,則b、c均大于0,此時b+c>0,故②錯誤;∴可以轉(zhuǎn)化為:,得x=b或x=c,故③正確;∵b,c是關于x的一元二次方程的兩個實數(shù)根,∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a﹣1,當a>1時,2a﹣1>3,當0<a<1時,﹣1<2a﹣1<3,故④錯誤;故答案為①③.18、60【解析】∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°∴θ=60°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)見解析;(3).【解析】

(1)根據(jù)P(m,n)移到P(m+6,n+1)可知△ABC向右平移6個單位,向上平移了一個單位,由圖形平移的性質(zhì)即可得出點A1,B1,C1的坐標,再順次連接即可;(2)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)畫出旋轉(zhuǎn)后的圖形即可;(3)先求出BC長,再利用扇形面積公式,列式計算即可得解.【詳解】解:(1)平移△ABC得到△A1B1C1,點P(m,n)移到P(m+6,n+1)處,∴△ABC向右平移6個單位,向上平移了一個單位,∴A1(4,4),B1(2,0),C1(8,1);順次連接A1,B1,C1三點得到所求的△A1B1C1(2)如圖所示:△A2B2C即為所求三角形.(3)BC的長為:BC掃過的面積【點睛】本題考查了利用旋轉(zhuǎn)變換作圖,利用平移變換作圖,比較簡單,熟練掌握網(wǎng)格結構,準確找出對應點的位置是解題的關鍵.20、(1)證明見解析;(2)AC=4.【解析】

(1)連接,根據(jù)切線的性質(zhì)得到,根據(jù)垂直的定義得到,得到,然后根據(jù)圓周角定理證明即可;(2)設的半徑為,根據(jù)余弦的定義、勾股定理計算即可.【詳解】(1)連接.∵射線切于點,.,,,,,由圓周角定理得:,;(2)由(1)可知:,,,,,設的半徑為,則,在中,,,,∴由勾股定理可知:,.在中,,由勾股定理可知:.【點睛】本題考查了切線的性質(zhì)、圓周角定理以及解直角三角形,掌握切線的性質(zhì)定理、圓周角定理、余弦的定義是解題的關鍵.21、(1)7x1+4x+4;(1)55.【解析】

(1)根據(jù)整式加法的運算法則,將(4x1+5x+6)+(3x1﹣x﹣1)即可求得紙片①上的代數(shù)式;(1)先解方程1x=﹣x﹣9,再代入紙片①的代數(shù)式即可求解.【詳解】解:(1)紙片①上的代數(shù)式為:(4x1+5x+6)+(3x1﹣x﹣1)=4x1+5x+6+3x1-x-1=7x1+4x+4(1)解方程:1x=﹣x﹣9,解得x=﹣3代入紙片①上的代數(shù)式得7x1+4x+4=7×(-3)2+4×(-3)+4=63-11+4=55即紙片①上代數(shù)式的值為55.【點睛】本題考查了整式加減混合運算,解一元一次方程,代數(shù)式求值,在解題的過程中要牢記并靈活運用整式加減混合運算的法則.特別是對于含括號的運算,在去括號時,一定要注意符號的變化.22、(1)60,90°;(2)補圖見解析;(3)300;(4).【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)用總?cè)藬?shù)乘以“了解”和“基本了解”程度的人數(shù)所占的比例,即可求出達到“了解”和“基本了解”程度的總?cè)藬?shù);(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.詳解:(1)60;90°.(2)補全的條形統(tǒng)計圖如圖所示.(3)對食品安全知識達到“了解”和“基本了解”的學生所占比例為,由樣本估計總體,該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù)為.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情況一共12種,其中選中1個男生和1個女生的情況有8種,所以恰好選中1個男生和1個女生的概率是.點睛:本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,根據(jù)題意求出總?cè)藬?shù)是解題的關鍵;注意運用概率公式:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)15人;(2)補圖見解析.(3)12【解析】

(1)根據(jù)三班有6人,占的百分比是40%,用6除以所占的百分比即可得總?cè)藬?shù);(2)用總?cè)藬?shù)減去一、三、四班的人數(shù)得到二班的人數(shù)即可補全條形圖,用一班所占的比例乘以360°即可得A1所在扇形的圓心角的度數(shù);(3)根據(jù)題意畫出樹狀圖,得出所有可能,進而求恰好選出一名男生和一名女生的概率.【詳解】解:(1)七年級已“建檔立卡”的貧困家庭的學生總?cè)藬?shù):6÷40%=15人;(2)A2的人數(shù)為15﹣2﹣6﹣4=3(人)補全圖形,如圖所示,A1所在圓心角度數(shù)為:215(3)畫出樹狀圖如下:共6種等可能結果,符合題意的有3種∴選出一名男生一名女生的概率為:P=36【點睛】本題考查了條形圖與扇形統(tǒng)計圖,概率等知識,準確識圖,從圖中發(fā)現(xiàn)有用的信息,正確根據(jù)已知畫出樹狀圖得出所有可能是解題關鍵.24、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解析】

(1)如圖1中,作AH⊥BC于H.首先證明四邊形AHCD是正方形,求出BC、MC的長,利用平行線分線段成比例定理即可解決問題;(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM?EB,由此構建函數(shù)關系式即可解決問題;(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點G,使得HG=DN,連接AG.想辦法證明CM=CN,MN=DN+HM即可解決問題;【詳解】解:(1)如圖1中,作AH⊥BC于H.∵CD⊥BC,AD∥BC,∴∠BCD=∠D=∠AHC=90°,∴四邊形AHCD是矩形,∵AD=DC=1,∴四邊形AHCD是正方形,∴AH=CH=CD=1,∵∠B=45°,∴AH=BH=1,BC=2,∵CM=BC=,CM∥AD,∴=,∴=,∴CF=1.(2)如圖1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,∵∠AEM=∠AEB,∠EAM=∠B,∴△EAM∽△EBA,∴=,∴AE2=EM?EB,∴1+(1+y)2=(x+y)(y+2),∴y=,∵2﹣2x≥0,∴0≤x≤1.(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點G,使得HG=DN,連接AG.則△ADN≌△AHG,△MAN≌△MAG,∴MN=MG=HM+GH=HM+DN,∵△ABM∽△EFN,∴∠EFN=∠B=45°,∴CF=CE,∵四邊形AHCD是正方形,∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,∴△AHE≌△ADF,∴∠AEH=∠AFD,∵∠AEH=∠DAN,∠AFD=∠HAM,∴∠HAM=∠DAN,∴△ADN≌△AHM,∴DN=HM,設DN=HM=x,則MN=2x,CN=CM=x,∴x+x=1,∴x=﹣1,∴CM=2﹣.【點睛】本題考查了正方形的判定與性質(zhì),平行線分線段成比例定理,勾股定理,相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì).熟練運用平行線分線段成比例定理是解(1)的關鍵;證明△EAM∽△EBA是解(2)的關鍵;綜合運用全等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論