



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第2023九年級數學中考考點
九年級數學中考考點
1.點與圓的位置關系及其數量特征:如果圓的半徑為r,點到圓心的距離為d,則
①點在圓上===②點在圓內===ddr.
二.圓的對稱性:
1.與圓相關的概念:
④同心圓:圓心相同,半徑不等的兩個圓叫做同心圓。
⑤等圓:能夠完全重合的兩個圓叫做等圓,半徑相等的兩個圓是等圓。
⑥等弧:在同圓或等圓中,能夠互相重合的弧叫做等弧。
⑦圓心角:頂點在圓心的角叫做圓心角.
⑧弦心距:從圓心到弦的距離叫做弦心距.
2.圓是軸對稱圖形,直徑所在的直線是它的對稱軸,圓有無數條對稱軸。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
說明:根據垂徑定理與推論可知對于一個圓和一條直線來說,如果具備:
①過圓心;②垂直于弦;③平分弦;④平分弦所對的優弧;⑤平分弦所對的劣弧。
上述五個條件中的任何兩個條件都可推出其他三個結論。
4.定理:在同圓或等圓中,相等的圓心角所對弧相等、所對的弦相等、所對的弦心距相等。
推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應的其余各組量都分別相等.
三.圓周角和圓心角的關系:
1.圓周角的定義:頂點在圓上,并且兩邊都與圓相交的角,叫做圓周角.
2.圓周角定理;一條弧所對的圓周角等于它所對的圓心角的一半.
推論1:同弧或等弧所對圓周角相等;反之,在同圓或等圓中,相等圓周角所對弧也相等;
推論2:半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑;
四.確定圓的條件:
1.理解確定一個圓必須的具備兩個條件:
經過一點可以作無數個圓,經過兩點也可以作無數個圓,其圓心在這個兩點線段的垂直平分線上.
2.定理:不在同一直線上的三個點確定一個圓.
3.三角形的外接圓、三角形的外心、圓的內接三角形的概念:
(1)三角形的外接圓和圓的內接三角形:經過一個三角形三個頂點的圓叫做這個三角形的外接圓,這個三角形叫做圓的內接三角形.
(2)三角形的外心:三角形外接圓的圓心叫做這個三角形的外心.
(3)三角形的外心的性質:三角形外心到三頂點的距離相等.
數學中考考點總結
1、圓是定點的距離等于定長的點的集合
2、圓的內部可以看作是圓心的距離小于半徑的點的集合
3、圓的外部可以看作是圓心的距離大于半徑的點的集合
4、同圓或等圓的半徑相等
5、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
6、和已知線段兩個端點的距離相等的點的軌跡,是這條線段的垂直平分線
7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
9、定理不在同一直線上的三點確定一個圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
11、推論1:
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
12、推論2:圓的兩條平行弦所夾的弧相等
13、圓是以圓心為對稱中心的中心對稱圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
16、定理:一條弧所對的圓周角等于它所對的圓心角的一半
17、推論:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
20、定理:圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
數學中考考點
1.在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A所形成的圖形叫做圓。固定的端點O叫做圓心,線段OA叫做半徑。
2.連接圓上任意兩點的線段叫做弦,經過圓心的弦叫做直徑。
3.圓上任意兩點間的部分叫作圓弧,簡稱弧。圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫做半圓。能夠重合的兩個圓叫做等圓。在同圓或等圓中,能夠互相重合的弧叫做等弧。
4.圓是軸對稱圖形,任何一條直徑所在直線都是它的對稱軸。
5.垂直于弦的直徑平分弦,并且平分弦所對的兩條弧。
6.平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
7.我們把頂點在圓心的角叫做圓心角。
8.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
9.在同圓或等圓中,如果兩條弧相等,那么它們所對的圓心角相等,所對的弦相等。
10.在同圓或等圓中,如果兩條弦相等,那么它們所對的圓心角相等,所對的弧相等。
11.頂點在圓上,并且兩邊都與圓相交的角叫做圓周角。
12.在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。
13.半圓(或半徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑。
14.如果一個多邊形的所有頂點都在同一個圓上,這個多邊形叫做圓內接多邊形,這個圓叫做這個多邊形的外接圓。
15.在同圓或等圓中,如果兩個圓周角相等,他們所對的弧一定相等。
16.圓內接四邊形的對角互補。
17.點P在圓外——dr點P在圓上——d=r點P在圓內——d
18.不在同一直線上的三個點確定一個圓。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 肇慶市實驗中學高中生物:第二章基因和染色體的關系(第2課時)教案
- 部編版一年級語文下冊期末綜合試卷(附答案)
- 新疆體育職業技術學院《科技論文寫作指導》2023-2024學年第二學期期末試卷
- 新疆醫科大學《微生物與生物化學基礎》2023-2024學年第二學期期末試卷
- 信陽藝術職業學院《內科學C》2023-2024學年第二學期期末試卷
- 2025-2030年中國PE行業發展預測分析及投資規劃研究報告
- 2025-2030工業鍋爐市場發展現狀調查及供需格局分析預測報告
- 甘肅省平涼市崆峒區2024屆中考一模數學試題含解析
- 廣東省高州市謝雞鎮達標名校2023-2024學年中考數學最后沖刺模擬試卷含解析
- 2025年企業負責人安全培訓考試試題及答案 完整
- 培養初中學生的數學閱讀理解能力
- 海洋油氣開發生產簡介課件
- 卒中相關肺炎的指南解讀
- 六下統編版復習2形近字
- 硒知識科普手冊
- 起重吊裝作業審批表
- 最新三角形的特性優質課教學設計公開課教案
- 新版冀教版科學四年級下冊全冊教案(雙面打印)
- MSAGRR數據自動生成工具(已經解密)
- DBJ 33-T 1268-2022工程建設工法編制標準(高清正版)
- 漫畫教你精益生產
評論
0/150
提交評論