山東省青島市開發區六中學2022-2023學年畢業升學考試模擬卷數學卷含解析_第1頁
山東省青島市開發區六中學2022-2023學年畢業升學考試模擬卷數學卷含解析_第2頁
山東省青島市開發區六中學2022-2023學年畢業升學考試模擬卷數學卷含解析_第3頁
山東省青島市開發區六中學2022-2023學年畢業升學考試模擬卷數學卷含解析_第4頁
山東省青島市開發區六中學2022-2023學年畢業升學考試模擬卷數學卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.點P(﹣2,5)關于y軸對稱的點的坐標為()A.(2,﹣5) B.(5,﹣2) C.(﹣2,﹣5) D.(2,5)2.已知二次函數y=ax2+bx+c(a≠1)的圖象如圖所示,則下列結論:①a、b同號;②當x=1和x=3時,函數值相等;③4a+b=1;④當y=﹣2時,x的值只能取1;⑤當﹣1<x<5時,y<1.其中,正確的有()A.2個 B.3個 C.4個 D.5個3.下面的幾何體中,主視圖為圓的是()A. B. C. D.4.如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則()A.DE=EB B.DE=EB C.DE=DO D.DE=OB5.數據4,8,4,6,3的眾數和平均數分別是()A.5,4 B.8,5 C.6,5 D.4,56.已知矩形ABCD中,AB=3,BC=4,E為BC的中點,以點B為圓心,BA的長為半徑畫圓,交BC于點F,再以點C為圓心,CE的長為半徑畫圓,交CD于點G,則S1-S2=()A.6 B. C.12﹣π D.12﹣π7.sin60°的值為()A. B. C. D.8.將不等式組的解集在數軸上表示,下列表示中正確的是()A. B. C. D.9.若x﹣2y+1=0,則2x÷4y×8等于()A.1 B.4 C.8 D.﹣1610.如圖,直線l是一次函數y=kx+b的圖象,若點A(3,m)在直線l上,則m的值是()A.﹣5 B. C. D.7二、填空題(本大題共6個小題,每小題3分,共18分)11.已知關于x的一元二次方程有兩個相等的實數根,則a的值是______.12.已知代數式2x﹣y的值是,則代數式﹣6x+3y﹣1的值是_____.13.已知拋物線y=x2-x-1與x軸的一個交點為(m,0),則代數式m2-m+2017的值為____.14.如圖,在矩形ABCD中,過點A的圓O交邊AB于點E,交邊AD于點F,已知AD=5,AE=2,AF=1.如果以點D為圓心,r為半徑的圓D與圓O有兩個公共點,那么r的取值范圍是______.15.如圖,在?ABCD中,E、F分別是AB、DC邊上的點,AF與DE相交于點P,BF與CE相交于點Q,若S△APD=16cm1,S△BQC=15cm1,則圖中陰影部分的面積為_____cm1.16.若點(,1)與(﹣2,b)關于原點對稱,則=_______.三、解答題(共8題,共72分)17.(8分)如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點F為OD的延長線上一點且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.18.(8分)(1)|﹣2|+?tan30°+(2018﹣π)0-()-1(2)先化簡,再求值:(﹣1)÷,其中x的值從不等式組的整數解中選取.19.(8分)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A作BC的平行線交CE的延長線與F,且AF=BD,連接BF。求證:D是BC的中點;如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論。20.(8分)在⊙O中,弦AB與弦CD相交于點G,OA⊥CD于點E,過點B作⊙O的切線BF交CD的延長線于點F.(I)如圖①,若∠F=50°,求∠BGF的大小;(II)如圖②,連接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.21.(8分)2019年8月.山西龍城將迎來全國第二屆青年運動會,盛會將至,整個城市已經進入了全力準備的狀態.太職學院足球場作為一個重要比賽場館.占地面積約24300平方米.總建筑面積4790平方米,設有2476個座位,整體建筑簡潔大方,獨具特色.2018年3月15日該場館如期開工,某施工隊負責安裝該場館所有座位,在安裝完476個座位后,采用新技術,效率比原來提升了.結來比原計劃提前4天完成安裝任務.求原計劃每天安裝多少個座位.22.(10分)在平面直角坐標系中,△ABC的頂點坐標是A(﹣2,3),B(﹣4,﹣1),C(2,0).點P(m,n)為△ABC內一點,平移△ABC得到△A1B1C1,使點P(m,n)移到P(m+6,n+1)處.(1)畫出△A1B1C1(2)將△ABC繞坐標點C逆時針旋轉90°得到△A2B2C,畫出△A2B2C;(3)在(2)的條件下求BC掃過的面積.23.(12分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.24.平面直角坐標系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點C,與x軸正半軸相交于點A,OA=OC,與x軸的另一個交點為B,對稱軸是直線x=1,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)拋物線的對稱軸與x軸相交于點M,求∠PMC的正切值;(3)點Q在y軸上,且△BCQ與△CMP相似,求點Q的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據關于y軸對稱點的坐標特點:橫坐標互為相反數,縱坐標不變可得答案.【詳解】點關于y軸對稱的點的坐標為,故選:D.【點睛】本題主要考查了平面直角坐標系中點的對稱,熟練掌握點的對稱特點是解決本題的關鍵.2、A【解析】

根據二次函數的性質和圖象可以判斷題目中各個小題是否成立.【詳解】由函數圖象可得,

a>1,b<1,即a、b異號,故①錯誤,

x=-1和x=5時,函數值相等,故②錯誤,

∵-=2,得4a+b=1,故③正確,

由圖象可得,當y=-2時,x=1或x=4,故④錯誤,

由圖象可得,當-1<x<5時,y<1,故⑤正確,

故選A.【點睛】考查二次函數圖象與系數的關系,解答本題的關鍵是明確題意,利用二次函數的性質和數形結合的思想解答.3、C【解析】試題解析:A、的主視圖是矩形,故A不符合題意;B、的主視圖是正方形,故B不符合題意;C、的主視圖是圓,故C符合題意;D、的主視圖是三角形,故D不符合題意;故選C.考點:簡單幾何體的三視圖.4、D【解析】

解:連接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故選D.5、D【解析】

根據眾數的定義找出出現次數最多的數,再根據平均數的計算公式求出平均數即可【詳解】∵4出現了2次,出現的次數最多,∴眾數是4;這組數據的平均數是:(4+8+4+6+3)÷5=5;故選D.6、D【解析】

根據題意可得到CE=2,然后根據S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【詳解】解:∵BC=4,E為BC的中點,∴CE=2,∴S1﹣S2=3×4﹣,故選D.【點睛】此題考查扇形面積的計算,矩形的性質及面積的計算.7、B【解析】解:sin60°=.故選B.8、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數軸上即可.解:不等式可化為:,即.

∴在數軸上可表示為.故選B.“點睛”不等式組的解集在數軸上表示的方法:把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.9、B【解析】

先把原式化為2x÷22y×23的形式,再根據同底數冪的乘法及除法法則進行計算即可.【詳解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故選:B.【點睛】本題考查的是同底數冪的乘法及除法運算,根據題意把原式化為2x÷22y×23的形式是解答此題的關鍵.10、C【解析】

把(-2,0)和(0,1)代入y=kx+b,求出解析式,再將A(3,m)代入,可求得m.【詳解】把(-2,0)和(0,1)代入y=kx+b,得,解得所以,一次函數解析式y=x+1,再將A(3,m)代入,得m=×3+1=.故選C.【點睛】本題考核知識點:考查了待定系數法求一次函數的解析式,根據解析式再求函數值.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】試題分析:∵關于x的一元二次方程有兩個相等的實數根,∴.考點:一元二次方程根的判別式.12、【解析】

由題意可知:2x-y=,然后等式兩邊同時乘以-3得到-6x+3y=-,然后代入計算即可.【詳解】∵2x-y=,∴-6x+3y=-.∴原式=--1=-.故答案為-.【點睛】本題主要考查的是求代數式的值,利用等式的性質求得-6x+3y=-是解題的關鍵.13、1【解析】

把點(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.【詳解】∵二次函數y=x2﹣x﹣1的圖象與x軸的一個交點為(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.故答案為:1.【點睛】本題考查了拋物線與x軸的交點問題,求代數式的值的應用,解答此題的關鍵是求出m2﹣m=1,難度適中.14、【解析】

因為以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交,圓心距滿足關系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計算即可.【詳解】連接OA、OD,過O點作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四邊形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四邊形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交∴【點睛】本題考查了圓與圓相交的條件,熟記圓與圓相交時圓的半徑與圓心距的關系是關鍵.15、41【解析】試題分析:如圖,連接EF∵△ADF與△DEF同底等高,∴S△ADF=S△DEF,即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=16cm1,同理可得S△BQC=S△EFQ=15cm1,、∴陰影部分的面積為S△EPF+S△EFQ=16+15=41cm1.考點:1、三角形面積,1、平行四邊形16、.【解析】

∵點(a,1)與(﹣2,b)關于原點對稱,∴b=﹣1,a=2,∴==.故答案為.考點:關于原點對稱的點的坐標.三、解答題(共8題,共72分)17、(1)見解析;(2).【解析】

(1)連接OC,根據等腰三角形的性質得到∠OCB=∠B,∠OCB=∠F,根據垂徑定理得到OF⊥BC,根據余角的性質得到∠OCF=90°,于是得到結論;

(2)過D作DH⊥AB于H,根據三角形的中位線的想知道的OD=AC,根據平行四邊形的性質得到DF=AC,設OD=x,得到AC=DF=2x,根據射影定理得到CD=x,求得BD=x,根據勾股定理得到AD=x,于是得到結論.【詳解】解:(1)連接OC,

∵OC=OB,

∴∠OCB=∠B,

∵∠B=∠F,

∴∠OCB=∠F,

∵D為BC的中點,

∴OF⊥BC,

∴∠F+∠FCD=90°,

∴∠OCB+∠FCD=90°,

∴∠OCF=90°,

∴CF為⊙O的切線;

(2)過D作DH⊥AB于H,

∵AO=OB,CD=DB,

∴OD=AC,

∵四邊形ACFD是平行四邊形,

∴DF=AC,

設OD=x,

∴AC=DF=2x,

∵∠OCF=90°,CD⊥OF,

∴CD2=OD?DF=2x2,

∴CD=x,

∴BD=x,

∴AD=x,

∵OD=x,BD=x,

∴OB=x,

∴DH=x,

∴sin∠BAD==.【點睛】本題考查了切線的判定和性質,平行四邊形的性質,垂徑定理,射影定理,勾股定理,三角函數的定義,正確的作出輔助線是解題的關鍵.18、(1)-1(1)-1【解析】

(1)先根據根據絕對值的意義、立方根的意義、特殊角的三角函數值、零指數冪、負整數指數冪的意義化簡,然后按照實數的運算法則計算即可;(1)把括號里通分,把的分子、分母分解因式約分,然后把除法轉化為乘法計算;然后求出不等式組的整數解,選一個使分式有意義的值代入計算即可.【詳解】(1)原式=1+3×+1﹣5=1++1﹣5=﹣1;(1)原式====﹣,解不等式組得:-1≤x則不等式組的整數解為﹣1、0、1、1,∵x(x+1)≠0且x﹣1≠0,∴x≠0且x≠±1,∴x=1,則原式=﹣=﹣1.【點睛】本題考查了實數的運算,分式的化簡求值,不等式組的解法.熟練掌握各知識點是解答本題的關鍵,本題的易錯點是容易忽視分式有意義的條件.19、(1)詳見解析;(2)詳見解析【解析】

(1)根據兩直線平行,內錯角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,再根據全等三角形的性質和等量關系即可求解;(2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=AC,AD是中線,利用等腰三角形三線合一定理,可證AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.【詳解】(1)證明:∵AF∥BC,∴∠AFE=∠DCE,∵點E為AD的中點,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中點;(2)若AB=AC,則四邊形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四邊形AFBD是矩形.【點睛】本題考查了矩形的判定,全等三角形的判定與性質,平行四邊形的判定,是基礎題,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.20、(I)65°;(II)72°【解析】

(I)如圖①,連接OB,先利用切線的性質得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四邊形內角和可計算出∠AOB=130°,然后根據等腰三角形性質和三角形內角和計算出∠1=∠A=25°,從而得到∠2=65°,最后利用三角形內角和定理計算∠BGF的度數;(II)如圖②,連接OB,BO的延長線交AC于H,利用切線的性質得OB⊥BF,再利用AC∥BF得到BH⊥AC,與(Ⅰ)方法可得到∠AOB=144°,從而得到∠OBA=∠OAB=18°,接著計算出∠OAH=54°,然后根據圓周角定理得到∠BDG的度數.【詳解】解:(I)如圖①,連接OB,∵BF為⊙O的切線,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如圖②,連接OB,BO的延長線交AC于H,∵BF為⊙O的切線,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,與(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.也考查了圓周角定理.21、原計劃每天安裝100個座位.【解析】

根據題意先設原計劃每天安裝x個座位,列出方程再求解.【詳解】解:設原計劃每天安裝個座位,采用新技術后每天安裝個座位,由題意得:.解得:.經檢驗:是原方程的解.答:原計劃每天安裝100個座位.【點睛】此題重點考查學生對分式方程的實際應用,掌握分式方程的解法是解題的關鍵.22、(1)見解析;(2)見解析;(3).【解析】

(1)根據P(m,n)移到P(m+6,n+1)可知△ABC向右平移6個單位,向上平移了一個單位,由圖形平移的性質即可得出點A1,B1,C1的坐標,再順次連接即可;(2)根據圖形旋轉的性質畫出旋轉后的圖形即可;(3)先求出BC長,再利用扇形面積公式,列式計算即可得解.【詳解】解:(1)平移△ABC得到△A1B1C1,點P(m,n)移到P(m+6,n+1)處,∴△ABC向右平移6個單位,向上平移了一個單位,∴A1(4,4),B1(2,0),C1(8,1);順次連接A1,B1,C1三點得到所求的△A1B1C1(2)如圖所示:△A2B2C即為所求三角形.(3)BC的長為:BC掃過的面積【點睛】本題考查了利用旋轉變換作圖,利用平移變換作圖,比較簡單,熟練掌握網格結構,準確找出對應點的位置是解題的關鍵.23、(1)證明見解析;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論