云南省保山市施甸縣重點達標名校2022-2023學年中考數學考試模擬沖刺卷含解析_第1頁
云南省保山市施甸縣重點達標名校2022-2023學年中考數學考試模擬沖刺卷含解析_第2頁
云南省保山市施甸縣重點達標名校2022-2023學年中考數學考試模擬沖刺卷含解析_第3頁
云南省保山市施甸縣重點達標名校2022-2023學年中考數學考試模擬沖刺卷含解析_第4頁
云南省保山市施甸縣重點達標名校2022-2023學年中考數學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算的結果是()A.1 B.-1 C. D.2.已知圓錐的側面積為10πcm2,側面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm3.據財政部網站消息,2018年中央財政困難群眾救濟補助預算指標約為929億元,數據929億元科學記數法表示為()A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×10114.為確保信息安全,信息需加密傳輸,發送方將明文加密后傳輸給接收方,接收方收到密文后解密還原為明文,已知某種加密規則為,明文a,b對應的密文為a+2b,2a-b,例如:明文1,2對應的密文是5,0,當接收方收到的密文是1,7時,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,35.若一個正多邊形的每個內角為150°,則這個正多邊形的邊數是()A.12 B.11 C.10 D.96.不等式組的解集為.則的取值范圍為()A. B. C. D.7.世界上最小的鳥是生活在古巴的吸蜜蜂鳥,它的質量約為0.056盎司.將0.056用科學記數法表示為()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣18.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.9.sin45°的值等于()A. B.1 C. D.10.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤2二、填空題(共7小題,每小題3分,滿分21分)11.在直角三角形ABC中,∠C=90°,已知sinA=3512.如圖,P(m,m)是反比例函數在第一象限內的圖象上一點,以P為頂點作等邊△PAB,使AB落在x軸上,則△POB的面積為_____.13.如圖,AB是⊙O的直徑,點E是的中點,連接AF交過E的切線于點D,AB的延長線交該切線于點C,若∠C=30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____.14.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數y=在第一象限的圖象經過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為_______.15.學校乒乓球社團有4名男隊員和3名女隊員,要從這7名隊員中隨機抽取一男一女組成一隊混合雙打組合,可組成不同的組合共有_____對.16.分解因式=________,=__________.17.不等式組的解集是▲.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.19.(5分)石獅泰禾某童裝專賣店在銷售中發現,一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節,商店決定采取適當的降價措施,以擴大銷售量,增加利潤,經市場調查發現,如果每件童裝降價1元,那么平均可多售出2件.設每件童裝降價x元時,每天可銷售______件,每件盈利______元;(用x的代數式表示)每件童裝降價多少元時,平均每天贏利1200元.要想平均每天贏利2000元,可能嗎?請說明理由.20.(8分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.21.(10分)某汽車制造公司計劃生產A、B兩種新型汽車共40輛投放到市場銷售.已知A型汽車每輛成本34萬元,售價39萬元;B型汽車每輛成本42萬元,售價50萬元.若該公司對此項計劃的投資不低于1536萬元,不高于1552萬元.請解答下列問題:(1)該公司有哪幾種生產方案?(2)該公司按照哪種方案生產汽車,才能在這批汽車全部售出后,所獲利潤最大,最大利潤是多少?(3)在(2)的情況下,公司決定拿出利潤的2.5%全部用于生產甲乙兩種鋼板(兩種都生產),甲鋼板每噸5000元,乙鋼板每噸6000元,共有多少種生產方案?(直接寫出答案)22.(10分)如圖,AD是△ABC的中線,CF⊥AD于點F,BE⊥AD,交AD的延長線于點E,求證:AF+AE=2AD.23.(12分)如圖,以O為圓心,4為半徑的圓與x軸交于點A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度數;(2)P為x軸正半軸上一點,且PA=OA,連接PC,試判斷PC與⊙O的位置關系,并說明理由;(3)有一動點M從A點出發,在⊙O上按順時針方向運動一周,當S△MAO=S△CAO時,求動點M所經過的弧長,并寫出此時M點的坐標.24.(14分)閱讀下列材料,解答下列問題:材料1.把一個多項式化成幾個整式的積的形式,這種變形叫做因式分解,也叫分解因式.如果把整式的乘法看成一個變形過程,那么多項式的因式分解就是它的逆過程.公式法(平方差公式、完全平方公式)是因式分解的一種基本方法.如對于二次三項式a2+2ab+b2,可以逆用乘法公式將它分解成(a+b)2的形式,我們稱a2+2ab+b2為完全平方式.但是對于一般的二次三項式,就不能直接應用完全平方了,我們可以在二次三項式中先加上一項,使其配成完全平方式,再減去這項,使整個式子的值不變,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:將“x+y”看成一個整體,令x+y=A,則原式=A2+2A+1=(A+1)2再將“A”還原,得:原式=(x+y+1)2.上述解題用到的是“整體思想”,整體思想是數學解題中常見的一種思想方法,請你解答下列問題:(1)根據材料1,把c2﹣6c+8分解因式;(2)結合材料1和材料2完成下面小題:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

原式通分并利用同分母分式的減法法則計算,即可得到結果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.2、C【解析】

圓錐的側面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【詳解】設母線長為R,則圓錐的側面積==10π,∴R=10cm,故選C.【點睛】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關鍵.3、B【解析】

科學記數法的表示形式為a×1n的形式,其中1≤|a|<1,n為整數.確定n的值是易錯點,由于929億有11位,所以可以確定n=11-1=1.【詳解】解:929億=92900000000=9.29×11.故選B.【點睛】此題考查科學記數法表示較大的數的方法,準確確定a與n值是關鍵.4、A【解析】

根據題意可得方程組,再解方程組即可.【詳解】由題意得:,解得:,故選A.5、A【解析】

根據正多邊形的外角與它對應的內角互補,得到這個正多邊形的每個外角=180°﹣150°=30°,再根據多邊形外角和為360度即可求出邊數.【詳解】∵一個正多邊形的每個內角為150°,∴這個正多邊形的每個外角=180°﹣150°=30°,∴這個正多邊形的邊數==1.故選:A.【點睛】本題考查了正多邊形的外角與它對應的內角互補的性質;也考查了多邊形外角和為360度以及正多邊形的性質.6、B【解析】

求出不等式組的解集,根據已知得出關于k的不等式,求出不等式的解集即可.【詳解】解:解不等式組,得.∵不等式組的解集為x<2,∴k+1≥2,解得k≥1.故選:B.【點睛】本題考查了解一元一次不等式組的應用,解此題的關鍵是能根據不等式組的解集和已知得出關于k的不等式,難度適中.7、B【解析】

0.056用科學記數法表示為:0.056=,故選B.8、B【解析】

如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,

NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.

∵四邊形ABCD是菱形,AB=4,∠DAB=60°,

∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB

∴∠HDE=∠DAB=60°,

∵點E是CD中點

∴DE=CD=1

在Rt△DEH中,DE=1,∠HDE=60°

∴DH=1,HE=

∴AH=AD+DH=5

在Rt△AHE中,AE==1

∴AN=NE=,AE⊥GF,AF=EF

∵CD=BC,∠DCB=60°

∴△BCD是等邊三角形,且E是CD中點

∴BE⊥CD,

∵BC=4,EC=1

∴BE=1

∵CD∥AB

∴∠ABE=∠BEC=90°

在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.

∴EF=由折疊性質可得∠AFG=∠EFG,

∴sin∠EFG=sin∠AFG=,故選B.【點睛】本題考查了折疊問題,菱形的性質,勾股定理,添加恰當的輔助線構造直角三角形,利用勾股定理求線段長度是本題的關鍵.9、D【解析】

根據特殊角的三角函數值得出即可.【詳解】解:sin45°=,故選:D.【點睛】本題考查了特殊角的三角函數的應用,能熟記特殊角的三角函數值是解此題的關鍵,難度適中.10、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D二、填空題(共7小題,每小題3分,滿分21分)11、35【解析】試題分析:解答此題要利用互余角的三角函數間的關系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點:互余兩角三角函數的關系.12、.【解析】

如圖,過點P作PH⊥OB于點H,∵點P(m,m)是反比例函數y=在第一象限內的圖象上的一個點,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等邊三角形,∴∠PAH=60°.∴根據銳角三角函數,得AH=.∴OB=3+∴S△POB=OB?PH=.13、【解析】

首先根據切線的性質及圓周角定理得CE的長以及圓周角度數,進而利用銳角三角函數關系得出DE,AD的長,利用S△ADE﹣S扇形FOE=圖中陰影部分的面積求出即可.【詳解】解:連接OE,OF、EF,∵DE是切線,∴OE⊥DE,∵∠C=30°,OB=OE=2,∴∠EOC=60°,OC=2OE=4,∴CE=OC×sin60°=∵點E是弧BF的中點,∴∠EAB=∠DAE=30°,∴F,E是半圓弧的三等分點,∴∠EOF=∠EOB=∠AOF=60°,∴OE∥AD,∠DAC=60°,∴∠ADC=90°,∵CE=AE=∴DE=,∴AD=DE×tan60°=∴S△ADE∵△FOE和△AEF同底等高,∴△FOE和△AEF面積相等,∴圖中陰影部分的面積為:S△ADE﹣S扇形FOE故答案為【點睛】此題主要考查了扇形的面積計算以及三角形面積求法等知識,根據已知得出△FOE和△AEF面積相等是解題關鍵.14、【解析】

設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖像可得出B的坐標,根據三角形的面積公式結合反比例函數系數k的幾何意義即可求解.【詳解】設△OAC和△BAD的直角邊長分別為a、b,則B點坐標為(a+b,a-b)∵點B在反比例函數y=在第一象限的圖象上,∴(a+b)(a-b)=a2-b2=3∴S△OAC﹣S△BAD=a2-b2=【點睛】此題主要考查等腰直角三角形的面積求法和反比例函數k值的定義,解題的關鍵是熟知等腰直角三角形的性質及反比例函數k值的性質.15、1【解析】

利用樹狀圖展示所有1種等可能的結果數.【詳解】解:畫樹狀圖為:

共有1種等可能的結果數.

故答案為1.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.16、【解析】此題考查因式分解答案點評:利用提公因式、平方差公式、完全平方公式分解因式17、﹣1<x≤1【解析】解一元一次不等式組.【分析】解一元一次不等式組,先求出不等式組中每一個不等式的解集,再利用口訣求出這些解集的公共部分:同大取大,同小取小,大小小大中間找,大大小小解不了(無解).因此,解第一個不等式得,x>﹣1,解第二個不等式得,x≤1,∴不等式組的解集是﹣1<x≤1.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)2π.【解析】

證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【點睛】本題考查了切線的判定和性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了弧長公式.19、(1)(20+2x),(40﹣x);(2)每件童裝降價20元或10元,平均每天贏利1200元;(3)不可能做到平均每天盈利2000元.【解析】

(1)、根據銷售量=原銷售量+因價格下降而增加的數量;每件利潤=原售價-進價-降價,列式即可;(2)、根據總利潤=單件利潤×數量,列出方程即可;(3)、根據(2)中的相關關系方程,判斷方程是否有實數根即可.【詳解】(1)、設每件童裝降價x元時,每天可銷售20+2x件,每件盈利40-x元,

故答案為(20+2x),(40-x);(2)、根據題意可得:(20+2x)(40-x)=1200,解得:即每件童裝降價10元或20元時,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000,,∵此方程無解,∴不可能盈利2000元.【點睛】本題主要考查的是一元二次方程的實際應用問題,屬于中等難度題型.解決這個問題的關鍵就是要根據題意列出方程.20、4【解析】

已知△ABC是等腰三角形,根據等腰三角形的性質,作于點,則直線為的中垂線,直線過點,在Rt△OBH中,用半徑表示出OH的長,即可用勾股定理求得半徑的長.【詳解】作于點,則直線為的中垂線,直線過點,,,,即,.【點睛】考查垂徑定理以及勾股定理,掌握垂徑定理是解題的關鍵.21、(1)共有三種方案,分別為①A型號16輛時,B型號24輛;②A型號17輛時,B型號23輛;③A型號18輛時,B型號22輛;(2)當時,萬元;(3)A型號4輛,B型號8輛;A型號10輛,B型號3輛兩種方案【解析】

(1)設A型號的轎車為x輛,可根據題意列出不等式組,根據問題的實際意義推出整數值;(2)根據“利潤=售價-成本”列出一次函數的解析式解答;(3)根據(2)中方案設計計算.【詳解】(1)設生產A型號x輛,則B型號(40-x)輛153634x+42(40-x)1552解得,x可以取值16,17,18共有三種方案,分別為A型號16輛時,B型號24輛A型號17輛時,B型號23輛A型號18輛時,B型號22輛(2)設總利潤W萬元則W==w隨x的增大而減小當時,萬元(3)A型號4輛,B型號8輛;A型號10輛,B型號3輛兩種方案【點睛】本題主要考查了一次函數的應用,以及一元一次不等式組的應用,此題是典型的數學建模問題,要先將實際問題轉化為不等式組解應用題.22、證明見解析.【解析】

由題意易用角角邊證明△BDE≌△CDF,得到DF=DE,再用等量代換的思想用含有AE和AF的等式表示AD的長.【詳解】證明:∵CF⊥AD于,BE⊥AD,∴BE∥CF,∠EBD=∠FCD,又∵AD是△ABC的中線,∴BD=CD,∴在△BED與△CFD中,,∴△△BED≌△CFD(AAS)∴ED=FD,又∵AD=AF+DF①,

AD=AE-DE②,由①+②得:AF+AE=2AD.【點睛】該題考察了三角形全等的證明,利用全等三角形的性質進行對應邊的轉化.23、(1)60°;(2)見解析;(3)對應的M點坐標分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【解析】

(1)由于∠OAC=60°,易證得△OAC是等邊三角形,即可得∠AOC=60°.

(2)由(1)的結論知:OA=AC,因此OA=AC=AP,即OP邊上的中線等于OP的一半,由此可證得△OCP是直角三角形,且∠OCP=90°,由此可判斷出PC與⊙O的位置關系.

(3)此題應考慮多種情況,若△MAO、△OAC的面積相等,那么它們的高必相等,因此有四個符合條件的M點,即:C點以及C點關于x軸、y軸、原點的對稱點,可據此進行求解.【詳解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等邊三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論