安徽省蚌埠固鎮縣聯考2023年八年級數學第二學期期末學業質量監測模擬試題含解析_第1頁
安徽省蚌埠固鎮縣聯考2023年八年級數學第二學期期末學業質量監測模擬試題含解析_第2頁
安徽省蚌埠固鎮縣聯考2023年八年級數學第二學期期末學業質量監測模擬試題含解析_第3頁
安徽省蚌埠固鎮縣聯考2023年八年級數學第二學期期末學業質量監測模擬試題含解析_第4頁
安徽省蚌埠固鎮縣聯考2023年八年級數學第二學期期末學業質量監測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年八下數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.對于任意的正數m,n定義運算※為:m※n=m-n(m≥n)mA.2-46 B.2 C.25 D.202.寧寧所在的班級有42人,某次考試他的成績是80分,若全班同學的平均分是78分,判斷寧寧成績是否在班級屬于中等偏上,還需要了解班級成績的()A.中位數 B.眾數 C.加權平均數 D.方差3.如圖,矩形ABCD的面積為10cm2,它的兩條對角線交于點O1,以AB、AO1為兩鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對角線交于點O2,同樣以AB、AO2為兩鄰邊作平行四邊形ABC2O2,…,依此類推,則平行四邊形ABCnOn的面積為()A.cm2 B.cm2 C.cm2 D.cm24.如圖,矩形ABCD,對角線AC、BD交于點O,AE⊥BD于點E,∠AOB=45°,則∠BAE的大小為()

A.15° B.22.5° C.30° D.45°5.若,則下列式子成立的是()A. B. C. D.6.如圖,小紅在作線段AB的垂直平分線時,是這樣操作的:分別以點A,B為圓心,大于線段AB長度的一半的長為半徑畫弧,相交于點C,D,則直線CD即為所求.連接AC,BC,AD,BD,根據她的作圖方法可知四邊形ADBC一定是()A.菱形 B.矩形 C.正方形 D.梯形7.如圖所示,四邊形OABC是正方形,邊長為6,點A、C分別在x軸、y軸的正半軸上,點D在OA上,且D點的坐標為(2,0),P是OB上一動點,則PA+PD的最小值為()A.2 B. C.4 D.68.若A(2,y1),B(3,y2)是一次函數y=-3x+1的圖象上的兩個點,則y1與y2的大小關系是()A.y1<y2 B.y1=y2 C.y1>y2 D.不能確定9.若分式的值為零,則x等于()A.0 B.2 C.±2 D.﹣210.如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標不可能是A.(6,0) B.(6,3) C.(6,5) D.(4,2)二、填空題(每小題3分,共24分)11.計算:3-2=;12.在平面直角坐標系中,將點繞點旋轉,得到的對應點的坐標是__________.13.小王參加某企業招聘測試,筆試、面試、技能操作得分分別為分、分、分,按筆試占、面試占、技能操作占計算成績,則小王的成績是__________.14.已知∠ABC=60°,點D是其角平分線上一點,BD=CD=6,DE//AB交BC于點E.若在射線BA上存在點F,使,請寫出相應的BF的長:BF=_________15.某中學規定學生的學期體育成績滿分為100分,其中早鍛煉及體育課外活動占20%,期中考試成績占30%,期末考試成績占50%,小桐的三項成績(百分制)依次為95,90,1.則小桐這學期的體育成績是__________.16.函數中,自變量的取值范圍是_____.17.如圖,在矩形ABCD中,AD=5,AB=3,點E是邊BC上一點,若ED平分∠AEC,則ΔABE的面積為________.18.“6l8購物節”前,天貓某品牌服裝旗艦店采購了一大批服裝,已知每套服裝進價為240元,出售時標價為360元,為了避免滯銷庫存,商店準備打折銷售,但要保持利潤不低于20%,那么至多可打_________折三、解答題(共66分)19.(10分)計算:(1)-2(2)(-)?(+)20.(6分)解不等式組并將解集在數軸上表示出來.21.(6分)如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E.(1)求證:AE=2CE;(2)連接CD,請判斷△BCD的形狀,并說明理由.22.(8分)如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.(1)求證:CE=AD;(2)當D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由.23.(8分)定義:只有一組對角是直角的四邊形叫做損矩形,連結它的兩個非直角頂點的線段叫做這個損矩形的直徑。(1)如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段AC,同時我們還發現損矩形中有公共邊的兩個三角形角的特點,在公共邊的同側的兩個角是相等的。如圖1中:△ABC和△ABD有公共邊AB,在AB同側有∠ADB和∠ACB,此時∠ADB=∠ACB;再比如△ABC和△BCD有公共邊BC,在CB同側有∠BAC和∠BDC,此時∠BAC=∠BDC。請再找一對這樣的角來=(2)如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由。(3)在第(2)題的條件下,若此時AB=,BD=,求BC的長。24.(8分)已知直線y=kx+b經過點A(﹣20,1)、B(10,20)兩點.(1)求直線y=kx+b的表達式;(2)當x取何值時,y>1.25.(10分)先閱讀下面的材料,再解答下面的問題:如果兩個三角形的形狀相同,則稱這兩個三角形相似.如圖1,△ABC與△DEF形狀相同,則稱△ABC與△DEF相似,記作△ABC∽△DEF.那么,如何說明兩個三角形相似呢?我們可以用“兩角分別相等的三角形相似”加以說明.用數學語言表示為:如圖1:在△ABC與△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF.請你利用上述定理解決下面的問題:(1)下列說法:①有一個角為50°的兩個等腰三角形相似;②有一個角為100°的兩個等腰三角形相似;③有一個銳角相等的兩個直角三角形相似;④兩個等邊三角形相似.其中正確的是______(填序號);(2)如圖2,已知AB∥CD,AD與BC相交于點O,試說明△ABO∽△DCO;(3)如圖3,在平行四邊形ABCD中,E是DC上一點,連接AE.F為AE上一點,且∠BFE=∠C,求證:△ABF∽△EAD.26.(10分)計算:(1)(2)()()

參考答案一、選擇題(每小題3分,共30分)1、B【解析】試題分析:∵3>2,∴3※2=3-2,∵8<22,∴8※22=8+12=2(2考點:2.二次根式的混合運算;2.新定義.2、A【解析】

根據中位數、眾數,加權平均數和方差的定義逐一判斷可得出答案。【詳解】解:A.由中位數的定義可知,寧寧成績與中位數比較可得出他的成績是否在班級中等偏上,故本選項正確;B.由眾數的定義可知,眾數反映同一個成績人數最多的情況,故本選項錯誤;C.由加權平均數的性質可知,平均數會受極端值的影響,故本選項錯誤;D.由方差的定義可知,方差反映的是數據的穩定情況,故本選項錯誤。【點睛】本題考查了眾數和中位數的知識,一組數據中出現次數最多的數據叫做眾數;將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.3、D【解析】

根據矩形的性質對角線互相平分可知O1是AC與DB的中點,根據等底同高得到S△ABO1=S矩形,又ABC1O1為平行四邊形,根據平行四邊形的性質對角線互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此類推得到S△ABO5=S矩形,而S△ABO5等于平行四邊形ABC5O5的面積的一半,根據矩形的面積即可求出平行四邊形ABC5O5和平行四邊形AB?nOn的面積.【詳解】解:∵設平行四邊形ABC1O1的面積為S1,∴S△ABO1=S1,又∵S△ABO1=S矩形,∴S1=S矩形=5=;設ABC2O2為平行四邊形為S2,∴S△ABO2=S2,又∵S△ABO2=S矩形,∴S2=S矩形=;,…,∴平行四邊形AB?nOn的面積為(cm2).故選D.【點睛】此題考查了矩形及平行四邊形的性質,要求學生審清題意,找出面積之間的關系,歸納總結出一般性的結論.考查了學生觀察、猜想、驗證及歸納總結的能力.4、B【解析】

根據同角的余角相等易證∠BAE=∠ADE,根據矩形對角線相等且互相平分的性質,可得∠OAB=∠OBA,在Rt△ABD中,已知∠OBA即可求得∠ADB的大小,從而得到結果.【詳解】∵四邊形ABCD是矩形,AE⊥BD,

∴∠BAE+∠ABD=90°,∠ADE+∠ABD=90°,

∴∠BAE=∠ADE

∵矩形對角線相等且互相平分,

∴∠OAB=∠OBA=,

∴∠BAE=∠ADE=90﹣67.5°=22.5°,

故選B.【點睛】本題考查了矩形的性質,解題的關鍵是熟練掌握矩形的對角線相等且互相平分.5、B【解析】

由,設x=2k,y=3k,然后將其代入各式,化簡求值即可得到答案【詳解】因為,設x=2k,y=3k∴,故A錯,故B對,故C錯,故D錯選B【點睛】本題考查比例的性質,屬于簡單題,解題關鍵在于掌握由,設x=2k,y=3k的解題方法6、A【解析】

根據垂直平分線的畫法得出四邊形ADBC四邊的關系進而得出四邊形一定是菱形.【詳解】解:∵分別以A和B為圓心,大于AB的長為半徑畫弧,兩弧相交于C、D,∴AC=AD=BD=BC,∴四邊形ADBC一定是菱形,故選A.【點睛】此題主要考查了線段垂直平分線的性質以及菱形的判定,得出四邊形四邊關系是解決問題的關鍵.7、A【解析】試題解析:連接CD,交OB于P.則CD就是PD+PA和的最小值.

∵在直角△OCD中,∠COD=90°,OD=2,OC=6,

∴CD=,

∴PD+PA=PD+PC=CD=2.

∴PD+PA和的最小值是2.

故選A.8、C【解析】

先根據一次函數的解析式判斷出函數的增減性,再根據1<3即可得出結論.【詳解】解:∵一次函數y=-3x+1中,k=-3<0,∴y隨著x的增大而減小.∵A(1,y1),B(3,y1)是一次函數y=-3x+1的圖象上的兩個點,1<3,∴y1>y1.故選:C.【點睛】本題考查的是一次函數圖象上點的坐標特點,熟知一次函數圖象上各點的坐標一定適合此函數的解析式是解答此題的關鍵.也考查了一次函數的性質.9、D【解析】

分式的值是1的條件是:分子為1,分母不為1.【詳解】∵x2-4=1,

∴x=±2,

當x=2時,2x-4=1,∴x=2不滿足條件.

當x=-2時,2x-4≠1,∴當x=-2時分式的值是1.

故選:D.【點睛】本題考查了分式值為零的條件,解題的關鍵是掌握分式值為零的條件是分子等于零且分母不等于零.注意:“分母不為零”這個條件不能少.10、B【解析】試題分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=1.A、當點E的坐標為(6,0)時,∠CDE=90°,CD=1,DE=1,則AB:BC=CD:DE,△CDE∽△ABC,故本選項不符合題意;B、當點E的坐標為(6,3)時,∠CDE=90°,CD=1,DE=1,則AB:BC≠CD:DE,△CDE與△ABC不相似,故本選項符合題意;C、當點E的坐標為(6,5)時,∠CDE=90°,CD=1,DE=4,則AB:BC=DE:CD,△EDC∽△ABC,故本選項不符合題意;D、當點E的坐標為(4,1)時,∠ECD=90°,CD=1,CE=1,則AB:BC=CD:CE,△DCE∽△ABC,故本選項不符合題意.故選B.二、填空題(每小題3分,共24分)11、【解析】根據負整數指數為正整數指數的倒數計算.解:3-2=.故答案為.12、【解析】

根據題意可知點N旋轉以后橫縱坐標都互為相反數,從而可以解答本題.【詳解】解:在平面直角坐標系xOy中,將點N(-1,-2)繞點O旋轉180°,得到的對應點的坐標是(1,2),故答案為:(1,2)【點睛】本題考查坐標與圖形變化-旋轉,解答本題的關鍵是明確題意,熟知坐標變化規律.13、【解析】

根據數據統計中的綜合計算公式計算即可.【詳解】解:故答案為94.【點睛】本題主要考查數據統計中的綜合成績的計算方法,這是數據統計中的重要知識點,必須熟練掌握.14、2或4.【解析】

過點D作DF1∥BE,求出四邊形BEDF1是菱形,根據菱形的對邊相等可得BE=DF1,然后根據等底等高的三角形的面積相等可知點F1為所求的點,過點D作DF2⊥BD,求出∠F1DF2=60°,從而得到△DF1F2是等邊三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“邊角邊”證明△CDF1和△CDF2全等,根據全等三角形的面積相等可得點F2也是所求的點,然后在等腰△BDE中求出BE的長,即可得解.【詳解】如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此時S△DCF1=S△BDE;過點D作DF2⊥BD,

∵∠ABC=60°,F1D∥BE,

∴∠F2F1D=∠ABC=60°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,

∴∠F1DF2=∠ABC=60°,

∴△DF1F2是等邊三角形,

∴DF1=DF2,

∵BD=CD,∠ABC=60°,點D是角平分線上一點,

∴∠DBC=∠DCB=×60°=30°,

∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF2=360°-150°-60°=150°,

∴∠CDF1=∠CDF2,

∵在△CDF1和△CDF2中,,

∴△CDF1≌△CDF2(SAS),

∴點F2也是所求的點,

∵∠ABC=60°,點D是角平分線上一點,DE∥AB,

∴∠DBC=∠BDE=∠ABD=×60°=30°,

又∵BD=6,

∴BE=×6÷cos30°=3÷=2,

∴BF1=BF2=BF1+F1F2=2+2=4,

故BF的長為2或4.故答案為:2或4.【點睛】本題考查全等三角形的判定與性質,三角形的面積,等邊三角形的判定與性質,直角三角形30°角所對的直角邊等于斜邊的一半的性質,熟練掌握等底等高的三角形的面積相等,以及全等三角形的面積相等是解題關鍵,(3)要注意符合條件的點F有兩個.15、2.5【解析】

根據題意,求小桐的三項成績的加權平均數即可.【詳解】95×20%+90×30%+1×50%=2.5(分),答:小桐這學期的體育成績是2.5分.故答案是:2.5【點睛】本題主要考查加權平均數,掌握加權平均數的意義,是解題的關鍵.16、【解析】

根據被開方式是非負數列式求解即可.【詳解】依題意,得,解得:,故答案為:.【點睛】本題考查了函數自變量的取值范圍,函數有意義時字母的取值范圍一般從幾個方面考慮:①當函數解析式是整式時,字母可取全體實數;②當函數解析式是分式時,考慮分式的分母不能為0;③當函數解析式是二次根式時,被開方數為非負數.④對于實際問題中的函數關系式,自變量的取值除必須使表達式有意義外,還要保證實際問題有意義.17、1【解析】

首先根據矩形的性質和角平分線的性質得到EA=DA,從而求得BE,然后利用三角形的面積公式進行計算即可.【詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,AD=BC=5,CD=AB=3,∴∠CED=∠ADE,∵ED平分∠AEC,∴∠AED=∠CED,∴∠EDA=∠AED,∴AD=AE=5,∴BE=AE2∴△ABE的面積=12BE?AB=12×4×3=故答案為:1.【點睛】本題考查了矩形的性質,勾股定理等,了解矩形的性質是解答本題的關鍵,難度不大.18、八.【解析】

設打了x折,用售價×折扣-進價得出利潤,根據利潤率不低于20%,列不等式求解.【詳解】解:設打了x折,

由題意得360×0.1x-240≥240×20%,

解得:x≥1.

則要保持利潤不低于20%,至多打1折.

故答案為:八.【點睛】本題考查一元一次不等式的應用,解題的關鍵是讀懂題意,求出打折之后的利潤,根據利潤率不低于20%,列不等式求解.三、解答題(共66分)19、(1);(2)﹣1.【解析】

(1)先把二次根式化為最簡二次根式,然后合并即可;(2)利用平方差公式進行計算即可.【詳解】(1)原式=2;(2)原式=2﹣5=﹣1.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.20、1<x≤1.【解析】

分別求出各不等式的解集,再求出其公共解集并在數軸上表示出來即可.【詳解】,由①得,x≤1,由②得,x>1,故不等式組的解集為:1<x≤1.在數軸上表示為:.21、見解析【解析】

(1)連接BE,根據線段垂直平分線的性質可得AE=BE,利用等邊對等角的性質可得∠ABE=∠A;結合三角形外角的性質可得∠BEC的度數,再在Rt△BCE中結合含30°角的直角三角形的性質,即可證明第(1)問的結論;(2)根據直角三角形斜邊中線的性質可得BD=CD,再利用直角三角形銳角互余的性質可得到∠ABC=60°,至此不難判斷△BCD的形狀【詳解】(1)證明:連結BE,如圖.∵DE是AB的垂直平分線,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE.(2)解:△BCD是等邊三角形.理由如下:∵DE垂直平分AB,∴D為AB的中點.∵∠ACB=90°,∴CD=BD.又∵∠ABC=60°,∴△BCD是等邊三角形.【點睛】此題考查了線段垂直平分線的性質、30°角的直角三角形的性質,等腰三角形的性質,直角三角形斜邊的中線等于斜邊的一半,等邊三角形的判定,熟練掌握30°角的直角三角形的性質是解(1)的關鍵,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解(2)的關鍵,22、(1)證明見解析;(2)證明見解析.【解析】

1)先求出四邊形ADEC是平行四邊形,根據平行四邊形的性質推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據菱形的判定推出即可.【詳解】(1)證明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四邊形ADEC是平行四邊形,∴CE=AD;(2)四邊形BECD是菱形,理由如下:∵D為AB中點,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四邊形BECD是平行四邊形,∵∠ACB=90°,D為AB中點,∴CD=BD,∴四邊形BECD是菱形.【點睛】本題考查了平行四邊形的性質和判定,菱形的判定,直角三角形的性質的應用,主要考查學生運用定理進行推理的能力.23、(1)∠ABD=∠ACD;(2)四邊形ACEF為正方形,理由見解析;(3)5.【解析】

(1)以AD為公共邊,有∠ABD=∠ACD;(2)證明△ADC是等腰直角三角形,得AD=CD,則AE=CF,根據對角線相等的菱形是正方形可得結論;(3)如圖2,作輔助線構建直角三角形,證明△ABC≌△CHE,得CH=AB=3,根據平行線等分線段定理可得BG=GH=4,從而得結論.【詳解】解:(1)由圖1得:△ABD和△ADC有公共邊AD,在AD同側有∠ABD和∠ACD,此時∠ABD=∠ACD;(2)四邊形ACEF為正方形,理由是:∵∠ABC=90°,BD平分∠ABC,∴∠ABD=∠CBD=45°∴∠DAC=∠CBD=45°∵四邊形ACEF是菱形,∴AELCF,∴∠ADC=90°,∴△ADC是等腰直角三角形,∴AD=CD,.AE=CF,∴菱形ACEF是正方形;(3)如圖2,過D作DG⊥BC于G,過E作EH⊥BC,交BC的延長線于H,∵∠DBG=45°,∴△BDG是等腰直角三角形,BD=4,∵BG=4,四邊形ACEF是正方形,∴AC=CE,∠ACE=90°,AD=DE,易得△ABC≌△CHE,∴CH=AB=3,AB//DG//EH,AD=DE,∴BG=GH=4,∴CG=4-3=1,∴BC=BG+CG=4+1=5.【點睛】本題是四邊形的綜合題,也是新定義問題,考查了損矩形和損矩形的直徑的概念,平行線等分線段定理,菱形的性質,正方形的判定等知識,認真閱讀理解新定義,第3問有難度,作輔助線構建全等三角形是關鍵.24、(1)y=x+11;(2)x>﹣20

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論