




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.空氣的密度為0.00129g/cm3,0.00129這個數用科學記數法可表示為()A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣12.實數a,b,c在數軸上對應點的位置如圖所示,則下列結論中正確的是()A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c3.菱形ABCD中,對角線AC、BD相交于點O,H為AD邊中點,菱形ABCD的周長為28,則OH的長等于()A.3.5 B.4 C.7 D.144.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.5.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m6.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=07.計算(ab2)3的結果是()A.ab5 B.ab6 C.a3b5 D.a3b68.如圖,一次函數y=x﹣1的圖象與反比例函數的圖象在第一象限相交于點A,與x軸相交于點B,點C在y軸上,若AC=BC,則點C的坐標為()A.(0,1) B.(0,2) C. D.(0,3)9.某射手在同一條件下進行射擊,結果如下表所示:射擊次數(n)102050100200500……擊中靶心次數(m)8194492178451……擊中靶心頻率(mn0.800.950.880.920.890.90……由此表推斷這個射手射擊1次,擊中靶心的概率是()A.0.6 B.0.7 C.0.8 D.0.910.若二次函數的圖像與軸有兩個交點,則實數的取值范圍是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.從三角形(非等腰三角形)一個頂點引出一條射線與對邊相交,該頂點與該交點間的線段把這個三角形分割成兩個小三角形,如果其中一個小三角形是等腰三角形,另一個與原三角形相似,那么我們把這條線段叫做這個三角形的完美分割線,如圖,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,則CD的長為_____.12.已知,正六邊形的邊長為1cm,分別以它的三個不相鄰的頂點為圓心,1cm長為半徑畫弧(如圖),則所得到的三條弧的長度之和為__________cm(結果保留π).13.計算:(1)()2=_____;(2)=_____.14.如圖,中,∠,,的面積為,為邊上一動點(不與,重合),將和分別沿直線,翻折得到和,那么△的面積的最小值為____.15.如圖,在梯形中,,,點、分別是邊、的中點.設,,那么向量用向量表示是________.16.9的算術平方根是.三、解答題(共8題,共72分)17.(8分)如圖1,在平面直角坐標系xOy中,拋物線y=ax2+bx﹣與x軸交于點A(1,0)和點B(﹣3,0).繞點A旋轉的直線l:y=kx+b1交拋物線于另一點D,交y軸于點C.(1)求拋物線的函數表達式;(2)當點D在第二象限且滿足CD=5AC時,求直線l的解析式;(3)在(2)的條件下,點E為直線l下方拋物線上的一點,直接寫出△ACE面積的最大值;(4)如圖2,在拋物線的對稱軸上有一點P,其縱坐標為4,點Q在拋物線上,當直線l與y軸的交點C位于y軸負半軸時,是否存在以點A,D,P,Q為頂點的平行四邊形?若存在,請直接寫出點D的橫坐標;若不存在,請說明理由.18.(8分)已知關于x的方程.(1)當該方程的一個根為1時,求a的值及該方程的另一根;(2)求證:不論a取何實數,該方程都有兩個不相等的實數根.19.(8分)在以“關愛學生、安全第一”為主題的安全教育宣傳月活動中,某學校為了了解本校學生的上學方式,在全校范圍內隨機抽查部分學生,了解到上學方式主要有:A:結伴步行、B:自行乘車、C:家人接送、D:其他方式,并將收集的數據整理繪制成如下兩幅不完整的統計圖.請根據圖中信息,解答下列問題:(1)本次抽查的學生人數是多少人?(2)請補全條形統計圖;請補全扇形統計圖;(3)“自行乘車”對應扇形的圓心角的度數是度;(4)如果該校學生有2000人,請你估計該校“家人接送”上學的學生約有多少人?20.(8分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.(1)求證:△AEF≌△DEB;(2)證明四邊形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面積.21.(8分)(1)計算:;(2)解不等式組:22.(10分)如圖,已知AB是⊙O上的點,C是⊙O上的點,點D在AB的延長線上,∠BCD=∠BAC.求證:CD是⊙O的切線;若∠D=30°,BD=2,求圖中陰影部分的面積.23.(12分)如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.(1)若直線經過、兩點,求直線和拋物線的解析式;(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標;(3)設點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標.24.如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經過點A,EF與AC交于M點.(1)求證:△ABE∽△ECM;(2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當線段AM最短時,求重疊部分的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:0.00129這個數用科學記數法可表示為1.29×10﹣1.故選C.考點:科學記數法—表示較小的數.2、D【解析】分析:根據圖示,可得:c<b<0<a,,據此逐項判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項A不符合題意;∵c<b<0,∴b+c<0,∴選項B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項D符合題意.故選D.點睛:此題考查了數軸,考查了有理數的大小比較關系,考查了不等關系與不等式.熟記有理數大小比較法則,即正數大于0,負數小于0,正數大于一切負數.3、A【解析】
根據菱形的四條邊都相等求出AB,菱形的對角線互相平分可得OB=OD,然后判斷出OH是△ABD的中位線,再根據三角形的中位線平行于第三邊并且等于第三邊的一半可得OHAB.【詳解】∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD.∵H為AD邊中點,∴OH是△ABD的中位線,∴OHAB7=3.1.故選A.【點睛】本題考查了菱形的對角線互相平分的性質,三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質與定理是解題的關鍵.4、B【解析】
先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【點睛】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關鍵.5、B【解析】
因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據正弦來解題,求出∠CAB,進而得出∠C′AB′的度數,然后可以求出魚線B'C'長度.【詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【點睛】此題主要考查了解直角三角形的應用,解本題的關鍵是把實際問題轉化為數學問題.6、D【解析】試題解析:含有兩個未知數,不是整式方程,C沒有二次項.故選D.點睛:一元二次方程需要滿足三個條件:含有一個未知數,未知數的最高次數是2,整式方程.7、D【解析】試題分析:根據積的乘方的性質進行計算,然后直接選取答案即可.試題解析:(ab2)3=a3?(b2)3=a3b1.故選D.考點:冪的乘方與積的乘方.8、B【解析】
根據方程組求出點A坐標,設C(0,m),根據AC=BC,列出方程即可解決問題.【詳解】由,解得或,
∴A(2,1),B(1,0),
設C(0,m),
∵BC=AC,
∴AC2=BC2,
即4+(m-1)2=1+m2,
∴m=2,
故答案為(0,2).【點睛】本題考查了反比例函數與一次函數的交點坐標問題、勾股定理、方程組等知識,解題的關鍵是會利用方程組確定兩個函數的交點坐標,學會用方程的思想思考問題.9、D【解析】
觀察表格的數據可以得到擊中靶心的頻率,然后用頻率估計概率即可求解.【詳解】依題意得擊中靶心頻率為0.90,估計這名射手射擊一次,擊中靶心的概率約為0.90.故選:D.【點睛】此題主要考查了利用頻率估計概率,首先通過實驗得到事件的頻率,然后用頻率估計概率即可解決問題.10、D【解析】
由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
設AB=x,利用△BCD∽△BAC,得=,列出方程即可解決問題.【詳解】∵△BCD∽△BAC,∴=,設AB=x,∴22=x,∵x>0,∴x=4,∴AC=AD=4-1=3,∵△BCD∽△BAC,∴==,∴CD=.故答案為【點睛】本題考查相似三角形的判定和性質、等腰三角形的性質等知識,解題的關鍵是利用△BCD∽△BAC解答.12、【解析】考點:弧長的計算;正多邊形和圓.分析:本題主要考查求正多邊形的每一個內角,以及弧長計算公式.解:方法一:先求出正六邊形的每一個內角==120°,所得到的三條弧的長度之和=3×=2πcm;方法二:先求出正六邊形的每一個外角為60°,得正六邊形的每一個內角120°,每條弧的度數為120°,三條弧可拼成一整圓,其三條弧的長度之和為2πcm.13、【解析】
(1)直接利用分式乘方運算法則計算得出答案;(2)直接利用分式除法運算法則計算得出答案.【詳解】(1)()2=;故答案為;(2)==.故答案為.【點睛】此題主要考查了分式的乘除法運算,正確掌握運算法則是解題關鍵.14、4.【解析】
過E作EG⊥AF,交FA的延長線于G,由折疊可得∠EAG=30°,而當AD⊥BC時,AD最短,依據BC=7,△ABC的面積為14,即可得到當AD⊥BC時,AD=4=AE=AF,進而得到△AEF的面積最小值為:AF×EG=×4×2=4.【詳解】解:如圖,過E作EG⊥AF,交FA的延長線于G,
由折疊可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,
∵∠BAC=75°,
∴∠EAF=150°,
∴∠EAG=30°,
∴EG=AE=AD,
當AD⊥BC時,AD最短,
∵BC=7,△ABC的面積為14,
∴當AD⊥BC時,,即:,∴.
∴△AEF的面積最小值為:
AF×EG=×4×2=4,故答案為:4.【點睛】本題主要考查了折疊問題,解題的關鍵是利用對應邊和對應角相等.15、【解析】分析:根據梯形的中位線等于上底與下底和的一半表示出EF,然后根據向量的三角形法則解答即可.詳解:∵點E、F分別是邊AB、CD的中點,∴EF是梯形ABCD的中位線,FC=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法則得,=+=2+===2+.故答案為:2+.點睛:本題考查了平面向量,平面向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關鍵,本題還考查了梯形的中位線等于上底與下底和的一半.16、1.【解析】
根據一個正數的算術平方根就是其正的平方根即可得出.【詳解】∵,∴9算術平方根為1.故答案為1.【點睛】本題考查了算術平方根,熟練掌握算術平方根的概念是解題的關鍵.三、解答題(共8題,共72分)17、(1)y=x2+x﹣;(2)y=﹣x+1;(3)當x=﹣2時,最大值為;(4)存在,點D的橫坐標為﹣3或或﹣.【解析】
(1)設二次函數的表達式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,則即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分當AP為平行四邊形的一條邊、對角線兩種情況,分別求解即可.【詳解】(1)設二次函數的表達式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函數的表達式為:①;(2)過點D作DF⊥x軸交于點F,過點E作y軸的平行線交直線AD于點M,∵OC∥DF,∴OF=5OA=5,故點D的坐標為(﹣5,6),將點A、D的坐標代入一次函數表達式:y=mx+n得:,解得:即直線AD的表達式為:y=﹣x+1,(3)設點E坐標為則點M坐標為則∵故S△ACE有最大值,當x=﹣2時,最大值為;(4)存在,理由:①當AP為平行四邊形的一條邊時,如下圖,設點D的坐標為將點A向左平移2個單位、向上平移4個單位到達點P的位置,同樣把點D左平移2個單位、向上平移4個單位到達點Q的位置,則點Q的坐標為將點Q的坐標代入①式并解得:②當AP為平行四邊形的對角線時,如下圖,設點Q坐標為點D的坐標為(m,n),AP中點的坐標為(0,2),該點也是DQ的中點,則:即:將點D坐標代入①式并解得:故點D的橫坐標為:或或.【點睛】本題考查的是二次函數綜合運用,涉及到圖形平移、平行四邊形的性質等,關鍵是(4)中,用圖形平移的方法求解點的坐標,本題難度大.18、(1),;(2)證明見解析.【解析】試題分析:(1)根據一元二次方程根與系數的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數根,只要證明根的判別式大于0即可.試題解析:(1)設方程的另一根為x1,∵該方程的一個根為1,∴.解得.∴a的值為,該方程的另一根為.(2)∵,∴不論a取何實數,該方程都有兩個不相等的實數根.考點:1.一元二次方程根與系數的關系;2.一元二次方程根根的判別式;3.配方法的應用.19、(1)本次抽查的學生人數是120人;(2)見解析;(3)126;(4)該校“家人接送”上學的學生約有500人.【解析】
(1)本次抽查的學生人數:18÷15%=120(人);(2)A:結伴步行人數120﹣42﹣30﹣18=30(人),據此補全條形統計圖;(3)“自行乘車”對應扇形的圓心角的度數360°×=126°;(4)估計該校“家人接送”上學的學生約有:2000×25%=500(人).【詳解】解:(1)本次抽查的學生人數:18÷15%=120(人),答:本次抽查的學生人數是120人;(2)A:結伴步行人數120﹣42﹣30﹣18=30(人),補全條形統計圖如下:“結伴步行”所占的百分比為×100%=25%;“自行乘車”所占的百分比為×100%=35%,
“自行乘車”在扇形統計圖中占的度數為360°×35%=126°,補全扇形統計圖,如圖所示;(3)“自行乘車”對應扇形的圓心角的度數360°×=126°,故答案為126;(4)估計該校“家人接送”上學的學生約有:2000×25%=500(人),答:該校“家人接送”上學的學生約有500人.【點睛】本題主要考查條形統計圖及扇形統計圖及相關計算,用樣本估計總體.解題的關鍵是讀懂統計圖,從條形統計圖中得到必要的信息是解決問題的關鍵.20、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解析】
(1)利用平行線的性質及中點的定義,可利用AAS證得結論;
(2)由(1)可得AF=BD,結合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質可證得AD=CD,可證得四邊形ADCF為菱形;
(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長,利用菱形的面積公式可求得答案.【詳解】(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.
∵AD為BC邊上的中線
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四邊形ADCF是平行四邊形,
∵∠BAC=90°,D是BC的中點,E是AD的中點,
∴AD=DC=BC,
∴四邊形ADCF是菱形;
(3)連接DF,
∵AF∥BD,AF=BD,
∴四邊形ABDF是平行四邊形,
∴DF=AB=5,
∵四邊形ADCF是菱形,
∴S菱形ADCF=AC?DF=×4×5=1.【點睛】本題主要考查菱形的性質及判定,利用全等三角形的性質證得AF=CD是解題的關鍵,注意菱形面積公式的應用.21、(1);(2).【解析】
(1)根據冪的運算與實數的運算性質計算即可.(2)先整理為最簡形式,再解每一個不等式,最后求其解集.【詳解】(1)解:原式==(2)解不等式①,得.解不等式②,得.∴原不等式組的解集為【點睛】本題考查了實數的混合運算和解一元一次不等式組,熟練掌握和運用相關運算性質是解答關鍵.22、(1)證明見解析;(2)陰影部分面積為【解析】【分析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;(2)設⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.【詳解】(1)如圖,連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直徑,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半徑,∴CD是⊙O的切線(2)設⊙O的半徑為r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴陰影部分面積為.【點睛】本題考查圓的綜合問題,涉及圓的切線判定,勾股定理,含30度的直角三角形的性質,等邊三角形的性質等知識,熟練掌握和靈活運用相關知識是解題的關鍵.23、(1)拋物線的解析式為,直線的解析式為.(2);(3)的坐標為或或或.【解析】分析:(1)先把點A,C的坐標分別代入拋物線解析式得到a和b,c的關系式,再根據拋物線的對稱軸方程可得a和b的關系,再聯立得到方程組,解方程組,求出a,b,c的值即可得到拋物線解析式;把B、C兩點的坐標代入直線y=mx+n,解方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 3219-2017高速公路擴建工程技術標準
- DB31/T 988-2016小白菜生產技術規范
- DB31/T 618-2022電網電能計量裝置配置技術規范
- DB31/T 572-2012網絡游戲行業服務規范
- DB31/T 407-2015噴墨打印機用再制造噴墨盒技術規范
- DB31/T 329.5-2018重點單位重要部位安全技術防范系統要求第5部分:電力設施
- DB31/T 1377.3-2022實驗雞和鴨第3部分:配合飼料營養成分
- DB31/T 1090-2018環境空氣非甲烷總烴在線監測技術規范
- DB31/T 1076-2018法醫臨床司法鑒定服務規范
- DB31/ 928-2015金屬真空熱處理工序單位產品能源消耗限額
- 浙江省杭州市濱江區2022-2023學年七年級下學期期末語文試卷(含答案)
- 誠信教育主題班會
- 成都醫學院輔導員考試真題2022
- 氯磺化聚乙烯生產工藝技術
- 桐廬縣2023年三下數學期末綜合測試試題含解析
- 裝飾施工階段安全檢查表完整
- 數值課件第章非線性方程求根
- TEC-5600除顫操作培訓
- 蘇科版二年級下冊勞動第7課《做皮影》課件
- 芯片手冊盛科sdk用戶開發指南
- SH/T 0659-1998瓦斯油中飽和烴餾分的烴類測定法(質譜法)
評論
0/150
提交評論