2023年云南機電職業技術學院高職單招(數學)試題庫含答案解析_第1頁
2023年云南機電職業技術學院高職單招(數學)試題庫含答案解析_第2頁
2023年云南機電職業技術學院高職單招(數學)試題庫含答案解析_第3頁
2023年云南機電職業技術學院高職單招(數學)試題庫含答案解析_第4頁
2023年云南機電職業技術學院高職單招(數學)試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區的她2023年云南機電職業技術學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.如圖的算法的功能是______.輸出結果i=______,i+2=______.答案:框圖首先輸入變量i的值,判斷i(i+2)=624,執行輸出i,i+2;否則,i=i+2.算法結束.故此算法執行的是求積為624的兩個連續偶數,i=24,i+2=26;故為:求積為624的兩個連續偶數,24,26.2.P是△ABC所在平面上的一點,且滿足,若△ABC的面積為1,則△PAB的面積為()

A.

B.

C.

D.答案:B3.已知G是△ABC的重心,過G的一條直線交AB、AC兩點分別于E、F,且有AE=λAB,AF=μAC,則1λ+1μ=______.答案:∵G是△ABC的重心∴取過G平行BC的直線EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故為34.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關系是()A.平行B.垂直C.相交不垂直D.無法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.5.已知變量a,b已被賦值,要交換a、b的值,應采用的算法是()

A.a=b,b=a

B.a=c,b=a,c=b

C.a=c,b=a,c=a

D.c=a,a=b,b=c答案:D6.若純虛數z滿足(2-i)z=4-bi,(i是虛數單位,b是實數),則b=()

A.-2

B.2

C.-8

D.8答案:C7.要從已編號(1~60)的60枚最新研制的某型導彈中隨機抽取6枚來進行發射試驗,用每部分選取的號碼間隔一樣的系統抽樣方法確定所選取的6枚導彈的編號可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B8.已知橢圓的短軸長等于2,長軸端點與短軸端點間的距離等于5,則此橢圓的標準方程是______.答案:由題意可得2b=2a2+b2=(5)2,解得b=1a=2.故橢圓的標準方程是x24+y2=1或y24+x2=1.故為x24+y2=1或y24+x2=1.9.三個數a=0.32,b=log20.3,c=20.3之間的大小關系是()A.a<c<bB.a<b<cC.b<a<cD.b<c<a答案:由對數函數的性質可知:b=log20.3<0,由指數函數的性質可知:0<a<1,c>1∴b<a<c故選C10.某校有老師300人,男學生1200人,女學生1000人.現用分層抽樣的方法從所有師生中抽取一個容量為n的樣本,已知從女學生中抽取的人數為80,則n=()

A.171

B.184

C.200

D.392答案:C11.直角△PIB中,∠PBO=90°,以O為圓心、OB為半徑作圓弧交OP于A點.若弧AB等分△POB的面積,且∠AOB=α弧度,則(

A.tanα=α

B.tan=2α

C.sinα=2cosα

D.2sin=cosα答案:B12.已知實數x,y滿足3x+4y+10=0,那么x2+y2的最小值為______.答案:設P(x,y),則|OP|=x2+y2,即x2+y2的幾何意義表示為直線3x+4y+10=0上的點P到原點的距離的最小值.則根據點到直線的距離公式得點P到直線3x+4y+10=0的距離d=|10|32+42=105=2.故為:2.13.為確保信息安全,信息需加密傳輸,發送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規則為:明文a,b,c,d對應密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4對應密文5,7,18,16.當接收方收到密文14,9,23,28時,則解密得到的明文為()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7答案:∵明文a,b,c,d對應密文a+2b,2b+c,2c+3d,4d,∴當接收方收到密文14,9,23,28時,則a+2b=142b+c=92c+3d=234d=28,解得a=6b=4c=1d=7,解密得到的明文為6,4,1,7故選C.14.,不等式恒成立的否定是

答案:,不等式成立解析::,不等式成立點評:本題考查推理與證明部分命題的否定,屬于容易題15.直線3x+4y-12=0和3x+4y+3=0間的距離是

______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.16.若橢圓長軸長與短軸長之比為2,它的一個焦點是(215,0),則橢圓的標準方程是______.答案:由題設條件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴橢圓的標準方程是x280+y220=1.故為:x280+y220=1.17.設a,b,c都是正數,求證:bca+cab+abc≥a+b+c.答案:證明:∵2(bca+acb+abc)=(bca+acb)+(bca+abc)+(acb+abc)≥2abc2ab+2acb2ac+2bca2bc=2c+2b+2a,∴bca+acb+abc≥a+b+c當且僅當a=b=c時,等號成立.18.設x,y,z∈R,且滿足:x2+y2+z2=1,x+2y+3z=14,則x+y+z=______.答案:根據柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)當且僅當x1=y2=z3時,上式的等號成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,結合x+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故為:314719.已知平面α內有一個點A(2,-1,2),α的一個法向量為=(3,1,2),則下列點P中,在平面α內的是()

A.(1,-1,1)

B.(1,3,)

C.,(1,-3,)

D.(-1,3,-)答案:B20.在平面直角坐標系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數)和直線l:x=4t+6y=-3t-2(t為參數),則直線l與圓C相交所得的弦長等于______.答案:∵在平面直角坐標系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數),∴(x+1)2+(y-2)2=25,∴圓心為(-1,2),半徑為5,∵直線l:x=4t+6y=-3t-2(t為參數),∴3x+4y-10=0,∴圓心到直線l的距離d=|-3+8-10|5=1,∴直線l與圓C相交所得的弦長=2×52-1=46.故為46.21.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A22.函數f(x)=2x2+1,&x∈[0,2],則函數f(x)的值域為()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴設y=2t,t=x2+1∈[1,5],∵y=2t是增函數,∴t=1時,ymin=2;t=5時,ymax=25=32.∴函數f(x)的值域為[2,32].故為:C.23.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為(

A.

B.

C.3

D.2答案:C24.過拋物線y2=4x的焦點作一條直線與拋物線相交于A、B兩點,它們的橫坐標之和等于5,則這樣的直線()

A.有且僅有一條

B.有且僅有兩條

C.有無窮多條

D.不存在答案:B25.已知某試驗范圍為[10,90],若用分數法進行4次優選試驗,則第二次試點可以是(

)。答案:40或60(不唯一)26.已知點P1的球坐標是P1(4,,),P2的柱坐標是P2(2,,1),則|P1P2|=()

A.

B.

C.

D.4答案:A27.如果x2+ky2=2表示焦點在y軸上的橢圓,則實數k的取值范圍是

______.答案:根據題意,x2+ky2=2化為標準形式為x22+y22k=1;根據題意,其表示焦點在y軸上的橢圓,則有2k>2;解可得0<k<1;故為0<k<1.28.三棱錐P-ABC中,M為BC的中點,以為基底,則可表示為()

A.

B.

C.

D.答案:D29.若不等式對一切x恒成立,求實數m的范圍.答案:見解析解析:∵x2-8x+20=(x-4)2+4>0,∴只須mx2-mx-1<0恒成立,即可:①

當m=0時,-1<0,不等式成立;②

當m≠0時,則須,解得-4<m<0.由(1)、(2)得:-4<m≤0.</m<0.30.刻畫數據的離散程度的度量,下列說法正確的是()

(1)應充分利用所得的數據,以便提供更確切的信息;

(2)可以用多個數值來刻畫數據的離散程度;

(3)對于不同的數據集,其離散程度大時,該數值應越小.

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正確答案:C31.求由曲線圍成的圖形的面積.答案:面積為解析:當,時,方程化成,即.上式表示圓心在,半徑為的圓.所以,當,時,方程表示在第一象限的部分以及軸,軸負半軸上的點,.同理,當,時,方程表示在第四象限的部分以及軸負半軸上的點;當,時,方程表示圓在第二象限的部分以及軸負半軸上的點;當,時,方程表示圓在第三象限部分.以上合起來構成如圖所示的圖形,面積為.32.設α∈[0,π],則方程x2sinα+y2cosα=1不能表示的曲線為()

A.橢圓

B.雙曲線

C.拋物線

D.圓答案:C33.用反證法證明命題:“三角形的內角中至少有一個不大于60度”時,假設正確的是()

A.假設三內角都不大于60度

B.假設三內角都大于60度

C.假設三內角至多有一個大于60度

D.假設三內角至多有兩個大于60度答案:B34.某重點高中高二歷史會考前,進行了五次歷史會考模擬考試,某同學在這五次考試中成績如下:90,90,93,94,93,則該同學的這五次成績的平均值和方差分別為()

A.92,2

B.92,2.8

C.93,2

D.93,2.8答案:B35.袋子里有大小相同的3個紅球和4個黑球,今從袋子里隨機取球.

(Ⅰ)若有放回地取3次,每次取1個球,求取出1個紅球2個黑球的概率;

(Ⅱ)若無放回地取3次,每次取1個球,

①求在前2次都取出紅球的條件下,第3次取出黑球的概率;

②求取出的紅球數X

的分布列和數學期望.答案:(Ⅰ)記“取出1個紅球2個黑球”為事件A,根據題意有P(A)=C13(37)×(47)2=144343;

所以取出1個紅球2個黑球的概率是144343.(Ⅱ)①記“在前2次都取出紅球”為事件B,“第3次取出黑球”為事件C,則P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出紅球的條件下,第3次取出黑球的概率是45.②隨機變量X

的所有取值為0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列為:所以EX=0×435+1×1835+2×1235+3×135=4535=97.36.如圖所示,在Rt△ABC內有一內接正方形,它的一條邊在斜邊BC上,設AB=a,∠ABC=θ

(1)求△ABC的面積f(θ)與正方形面積g(θ);

(2)當θ變化時,求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)

設正方形的邊長為x,則BG=xsinθ,由幾何關系知:∠AGD=θ∴AG=xcosθ

由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4

令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數y=1+14(t+t4)在(0,1]遞減∴ymin=94(當且僅當t=1即θ=π4時成立)∴當θ=π4時,f(θ)g(θ)的最小值為94.37.已知O是△ABC所在平面內一點,D為BC邊中點,且,那么(

A.

B.

C.

D.2

答案:A38.2012年3月2日,國家環保部發布了新修訂的《環境空氣質量標準》.其中規定:居民區的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.

某城市環保部門隨機抽取了一居民區去年20天PM2.5的24小時平均濃度的監測數據,數據統計如下:

組別PM2.5濃度

(微克/立方米)頻數(天)頻率

第一組(0,25]50.25第二組(25,50]100.5第三組(50,75]30.15第四組(75,100)20.1(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;

(Ⅱ)求樣本平均數,并根據樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區的環境是否需要改進?說明理由.答案:(Ⅰ)

設PM2.5的24小時平均濃度在(50,75]內的三天記為A1,A2,A3,PM2.5的24小時平均濃度在(75,100)內的兩天記為B1,B2.所以5天任取2天的情況有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10種.

…(4分)其中符合條件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6種.

…(6分)所以所求的概率P=610=35.

…(8分)(Ⅱ)去年該居民區PM2.5年平均濃度為:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…(10分)因為40>35,所以去年該居民區PM2.5年平均濃度不符合環境空氣質量標準,故該居民區的環境需要改進.

…(12分)39.已知ABCD是平行四邊形,P點是ABCD所在平面外的一點,連接PA、PB、PC、PD.設點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.

(1)試用向量方法證明E、F、G、H四點共面;

(2)試判斷平面EFGH與平面ABCD的位置關系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)

分別延長PE、PF、PG、PH交對邊于M、N、Q、R點,因為E、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點,順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,

=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點共面.(2)

由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵MN平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點,∴平面EFGH∥平面ABCD.40.拋物線y=4x2的焦點坐標為()

A.(1,0)

B.(0,)

C.(0,1)

D.(,0)答案:B41.兩圓相交于點A(1,3)、B(m,-1),兩圓的圓心均在直線x-y+c=0上,則m+c的值為(

A.3

B.2

C.-1

D.0答案:A42.若一個底面為正三角形、側棱與底面垂直的棱柱的三視圖如下圖所示,則這個棱柱的體積為()A.123B.363C.273D.6答案:此幾何體為一個三棱柱,棱柱的高是4,底面正三角形的高是33,設底面邊長為a,則32a=33,∴a=6,故三棱柱體積V=12?62?32?4=363.故選B43.為了了解學校學生的身體發育情況,抽查了該校100名高中男生的體重情況,根據所得數據畫出樣本的頻率分布直方圖如圖所示,根據此圖,估計該校2000名高中男生中體重大于70.5公斤的人數為()

A.300B.350C.420D.450答案:∵由圖得,∴70.5公斤以上的人數的頻率為:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人數為2000×0.181=362,故選B44.擬定從甲地到乙地通話m分鐘的電話費由f(x)=1.06×(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數,若通話費為10.6元,則通話時間m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故為:(17,18].45.直線y=2x+1的參數方程是()

A.(t為參數)

B.(t為參數)

C.(t為參數)

D.(θ為參數)

答案:B46.下列四組函數,表示同一函數的是()A.f(x)=x2,g(x)=xB.f(x)=x,g(x)=x2xC.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(0<a≠1),g(x)=3x3答案:同一函數必然具有相同的定義域、值域、對應關系,A中的2個函數的值域不同,B中的2個函數的定義域不同,C中的2個函數的對應關系不同,只有D的2個函數的定義域、值域、對應關系完全相同,故選D.47.設a>2,給定數列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當n=1時,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結論成立.②假設n=k時,結論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當n=1時成立假設不等式當n=k(k≥1)時成立當n=k+1時,由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設知,上面最后一個不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對所有的正整數n成立48.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為______.答案:∵AC是⊙O的直徑,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP為切線,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴周長=33.故填:33.49.直線2x-y=7與直線3x+2y-7=0的交點是()

A.(3,-1)

B.(-1,3)

C.(-3,-1)

D.(3,1)答案:A50.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},則方程x2m+y2n=1表示的是雙曲線的概率為______.答案:由題意,方程x2m+y2n=1表示雙曲線時,mn<0,m>0,n<0時,有2×2=4種,m<0,n>0時,有2×3=6種∵m,n的取值共有4×5=20種∴方程x2m+y2n=1表示的是雙曲線的概率為4+620=12故為:12第2卷一.綜合題(共50題)1.已知雙曲線的頂點到漸近線的距離為2,焦點到漸近線的距離為6,則該雙曲線的離心率為(

A.

B.

C.3

D.2答案:C2.已知點A(1,3),B(4,-1),則與向量同方向的單位向量為()

A.(,-)

B.(,-)

C.(-,)

D.(-,)答案:A3.口袋中裝有三個編號分別為1,2,3的小球,現從袋中隨機取球,每次取一個球,確定編號后放回,連續取球兩次.則“兩次取球中有3號球”的概率為()A.59B.49C.25D.12答案:每次取球時,出現3號球的概率為13,則兩次取得球都是3號求得概率為C22?(13)2=19,兩次取得球只有一次取得3號求得概率為C12?13?23=49,故“兩次取球中有3號球”的概率為19+49=59,故選A.4.一部記錄影片在4個單位輪映,每一單位放映一場,則不同的輪映方法數有()A.16B.44C.A44D.43答案:本題可以看做把4個單位看成四個位置,在四個位置進行全排列,故有A44種結果,故選C.5.4位學生與2位教師并坐合影留念,針對下列各種坐法,試問:各有多少種不同的坐法?(用數字作答)

(1)教師必須坐在中間;

(2)教師不能坐在兩端,但要坐在一起;

(3)教師不能坐在兩端,且不能相鄰.答案:(1)先排4位學生,有A44種坐法,2位教師坐在中間,可以交換位置,有A22種坐法,則共有A22A44=48種坐法;(2)先排4位學生,有A44種坐法,2位教師坐在一起,將其看成一個整體,可以交換位置,有2種坐法,將這個“整體”插在4個學生的空位中,又由教師不能坐在兩端,則有3個空位可選,則共有2A44A31=144種坐法;(3)先排4位學生,有A44種坐法,教師不能相鄰,將其依次插在4個學生的空位中,又由教師不能坐在兩端,則有3個空位可選,有A32種坐法,則共有A44A32=144種坐法..6.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設正方體邊長是acm,根據題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.7.設P點在x軸上,Q點在y軸上,PQ的中點是M(-1,2),則|PQ|等于______.答案:設P(a,0),Q(0,b),∵PQ的中點是M(-1,2),∴由中點坐標公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故為:258.求證:菱形各邊中點在以對角線的交點為圓心的同一個圓上.答案:已知:如圖,菱形ABCD的對角線AC和BD相交于點O.求證:菱形ABCD各邊中點M、N、P、Q在以O為圓心的同一個圓上.證明:∵四邊形ABCD是菱形,∴AC⊥BD,垂足為O,且AB=BC=CD=DA,而M、N、P、Q分別是邊AB、BC、CD、DA的中點,∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四點在以O為圓心OM為半徑的圓上.所以菱形各邊中點在以對角線的交點為圓心的同一個圓上.9.Direchlet函數定義為:D(t)=1,t∈Q0,t∈CRQ,關于函數D(t)的性質敘述不正確的是()A.D(t)的值域為{0,1}B.D(t)為偶函數C.D(t)不是周期函數D.D(t)不是單調函數答案:函數D(t)是分段函數,值域是兩段的并集,所以值域為{0,1};有理數和無理數正負關于原點對稱,所以函數D(t)的圖象關于y軸對稱,所以函數是偶函數;對于不同的有理數x對應的函數值相等,所以函數不是單調函數;因為任取一個非0有理數,都有有理數加有理數為有理數,有理數加無理數為無理數,所以函數D(t)的圖象周期出現,所以函數是周期函數,所以選項C不正確.故選C.10.為了了解某地母親身高x與女兒身高Y的相關關系,隨機測得10對母女的身高如下表所示:

母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計算x與Y的相關系數r≈0.71,通過查表得r的臨界值r0.05=0.632,從而有______的把握認為x與Y之間具有線性相關關系,因而求回歸直線方程是有意義的.通過計算得到回歸直線方程為y═34.92+0.78x,因此,當母親的身高為161cm時,可以估計女兒的身高大致為______.答案:查對臨界值表,由臨界值r0.05=0.632,可得有95%的把握認為x與Y之間具有線性相關關系,回歸直線方程為y=34.92+0.78x,因此,當x=161cm時,y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.11.根據如圖的框圖,寫出打印的第五個數是______.答案:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是:輸出N<35時,打印A值.程序在運行過程中各變量的情況如下表示:

是否繼續循環

A

N循環前

1

1

第一圈

2×1+1=3

2

是第二圈

2×3+1=7

3

是第三圈

2×7+1=15

4

是第四圈

2×15+1=31

5

是…所以這個打印的第五個數是31.故為:3112.北京期貨商會組織結構設置如下:

(1)會員代表大會下設監事會、會長辦公會,而會員代表大會于會長辦公會共轄理事會;

(2)會長辦公會設會長,會長管理秘書長;

(3)秘書長具體分管:秘書處、規范自律委員會、服務推廣委員會、發展創新委員會.

根據以上信息繪制組織結構圖.答案:繪制組織結構圖:13.如果關于x的不等式組有解,那么實數a的取值范圍(

A.(-∞,-3)∪(1,+∞)

B.(-∞,-1)∪(3,+∞)

C.(-1,3)

D.(-3,1)答案:C14.函數y=2x的值域為______.答案:因為:x≥0,所以:y=2x≥20=1.∴函數y=2x的值域為:[1,+∞).故為:[1,+∞).15.如圖,某公司制造一種海上用的“浮球”,它是由兩個半球和一個圓柱筒組成.其中圓柱的高為2米,球的半徑r為0.5米.

(1)這種“浮球”的體積是多少立方米(結果精確到0.1m3)?

(2)假設該“浮球”的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為20元,半球形部分每平方米建造費用為30元.求該“浮球”的建造費用(結果精確到1元).答案:(1)∵球的半徑r為0.5米,∴兩個半球的體積之和為V球=43πr3=43π?18=16πm3,∵圓柱的高為2米,∴V圓柱=πr2?h=π×14×2=12πm3,∴該“浮球”的體積是:V=V球+V圓柱=23π≈2.1m3;(2)圓柱筒的表面積為2πrh=2πm2;兩個半球的表面積為4πr2=πm2,∵圓柱形部分每平方米建造費用為20元,半球形部分每平方米建造費用為30元,∴該“浮球”的建造費用為2π×20+π×30=70π≈220元.16.下列隨機變量ξ服從二項分布的是()

①隨機變量ξ表示重復拋擲一枚骰子n次中出現點數是3的倍數的次數;

②某射手擊中目標的概率為0.9,從開始射擊到擊中目標所需的射擊次數ξ;

③有一批產品共有N件,其中M件為次品,采用有放回抽取方法,ξ表示n次抽取中出現次品的件數(M<N);

④有一批產品共有N件,其中M件為次品,采用不放回抽取方法,ξ表示n次抽取中出現次品的件數(M<N).

A.②③

B.①④

C.③④

D.①③答案:D17.已知曲線C1,C2的極坐標方程分別為ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),則曲線C1與C2交點的極坐標為______.答案:我們通過聯立解方程組ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即兩曲線的交點為(23,π6).故填:(23,π6).18.命題“若b≠3,則b2≠9”的逆命題是______.答案:根據“若p則q”的逆命題是“若q則p”,可得命題“若b≠3,則b2≠9”的逆命題是若b2≠9,則b≠3.故為:若b2≠9,則b≠3.19.已知點G是△ABC的重心,過G作直線與AB,AC兩邊分別交于M,N兩點,且,則的值()

A.3

B.

C.2

D.答案:B20.Rt△ABC中,AB=3,BC=4,AC=5,將三角形繞直角邊AB旋轉一周形成一個新的幾何體,想象幾何體的結構,畫出它的三視圖,求出它的表面積和體積.答案:以繞AB邊旋轉為例,其直觀圖、正(側)視圖、俯視圖依次分別為:其表面是扇形的表面,所以其表面積為S=πRL=36π,V=13×π×BC2×AB=16π.21.兩直線3x+y-3=0與6x+my+1=0平行,則它們之間的距離為()

A.4

B.

C.

D.答案:D22.質地均勻的正四面體玩具的4個面上分別刻著數字1,2,3,4,將4個這樣的玩具同時拋擲于桌面上.

(1)求與桌面接觸的4個面上的4個數的乘積不能被4整除的概率;

(2)設ξ為與桌面接觸的4個面上數字中偶數的個數,求ξ的分歧布列及期望Eξ.答案:(1)不能被4整除的有兩種情形;①4個數均為奇數,概率為P1=(12)4=116②4個數中有3個奇數,另一個為2,概率為P2=C34(12)3?14=18這兩種情況是互斥的,故所求的概率為P=116+18=316(2)ξ為與桌面接觸的4個面上數字中偶數的個數,由題意知ξ的可能取值是0,1,2,3,4,根據符合二項分布,得到P(ξ=k)=Ck4(12)4(k=0,1,2,3,4),ξ的分布列為∵ξ服從二項分布B(4,12),∴Eξ=4×12=2.23.一個完整的程序框圖至少應該包含______.答案:完整程序框圖必須有起止框,用來表示程序的開始和結束,還要包括處理框,用來處理程序的執行.故為:起止框、處理框.24.求證:答案:證明見解析解析:證:∴25.(理)已知函數f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是______.答案:作出函數的圖象如圖,直線y=y0交函數圖象于如圖,由正弦曲線的對稱性,可得A(a,y0)與B(b,y0)關于直線x=12對稱,因此a+b=1當直線線y=y0向上平移時,經過點(2011,1)時圖象兩個圖象恰有兩個公共點(A、B重合)所以0<y0<1時,兩個圖象有三個公共點,此時滿足f(a)=f(b)=f(c),(a、b、c互不相等),說明1<c<2011,因此可得a+b+c∈(2,2012)故為(2,2012)26.設a,b,c都是正數,求證:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:證明略解析:證明

(1)∵a,b,c都是正數,∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當且僅當a=b=c時,等號成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當且僅當a=b=c時,等號成立.27.已知空間四邊形ABCD中,M、G分別為BC、CD的中點,則等于()

A.

B.

C.

D.

答案:A28.口袋內有100個大小相同的紅球、白球和黑球,其中有45個紅球,從中摸出1個球,摸出白球的概率為0.23,則摸出黑球的概率為______.答案:∵口袋內有100個大小相同的紅球、白球和黑球從中摸出1個球,摸出白球的概率為0.23,∴口袋內白球數為32個,又∵有45個紅球,∴為32個.從中摸出1個球,摸出黑球的概率為32100=0.32故為0.3229.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對其中6題,乙能答對其中8題.若規定每次考試分別都從這10題中隨機抽出3題進行測試,至少答對2題算合格.

(1)分別求甲、乙兩人考試合格的概率;

(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.30.設四邊形ABCD中,有且,則這個四邊形是()

A.平行四邊形

B.矩形

C.等腰梯形

D.菱形答案:C31.求由曲線圍成的圖形的面積.答案:面積為解析:當,時,方程化成,即.上式表示圓心在,半徑為的圓.所以,當,時,方程表示在第一象限的部分以及軸,軸負半軸上的點,.同理,當,時,方程表示在第四象限的部分以及軸負半軸上的點;當,時,方程表示圓在第二象限的部分以及軸負半軸上的點;當,時,方程表示圓在第三象限部分.以上合起來構成如圖所示的圖形,面積為.32.袋中有5個小球(3白2黑),現從袋中每次取一個球,不放回地抽取兩次,則在第一次取到白球的條件下,第二次取到白球的概率是()

A.

B.

C.

D.答案:C33.六個不同大小的數按如圖形式隨機排列,設第一行這個數為M1,M2,M3分別表示第二、三行中最大數,則滿足M1<M2<M3所有排列的個數______.答案:首先M3一定是6個數中最大的,設這六個數分別為a,b,c,d,e,f,不妨設a>b>c>d>e>f.因為如果a在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時無法滿足M1<M2<M3,故a一定在第三行.故

M2一定是b,c,d中一個,否則,若M2是e,則第二行另一個數只能是f,那么第一行的數就比e大,無法滿足M1<M2<M3.當M2是b時,此時,a在第三行,b在第二行,其它數任意排,所有的排法有C31

C21

A44=144(種),當M2是c時,此時a和b必須在第三行,c在第二行,其它數任意排,所有的排法有A32

C21

A33=72(種),當M2是d時,此時,a,b,c在第三行,d在第二行,其它數任意排,所有的排法有A33

C21

A22=24(種),故滿足M1<M2<M3所有排列的個數為:24+72+144=240種,故為:240.34.如圖是拋物線形拱橋,當水面在l時,拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為______米.答案:如圖建立直角坐標系,設拋物線方程為x2=my,將A(2,-2)代入x2=my,得m=-2∴x2=-2y,代入B(x0,-3)得x0=6,故水面寬為26m.故為:26.35.在莖葉圖中,樣本的中位數為______,眾數為______.答案:由莖葉圖可知樣本數據共有6,出現在中間兩位位的數據是20,24,所以樣本的中位數是(20+24)÷2=22由莖葉圖可知樣本數據中出現最多的是12,樣本的眾數是12為:22,1236.已知函數f(x)=f(x+1)(x<4)2x(x≥4),則f(log23)=______.答案:因為1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故為:24.37.如圖,四條直線互相平行,且相鄰兩條平行線的距離均為h,一直正方形的4個頂點分別在四條直線上,則正方形的面積為()

A.4h2

B.5h2

C.4h2

D.5h2

答案:B38.用數字1,2,3,4,5組成的無重復數字的四位偶數的個數為()

A.8

B.24

C.48

D.120答案:C39.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),則C點坐標為

______.答案:設C(x,y,z),則:

AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故為:(9,-6,10)40.從1,2,…,9這九個數中,隨機抽取3個不同的數,則這3個數的和為偶數的概率是()A.59B.49C.1121D.1021答案:基本事件總數為C93,設抽取3個數,和為偶數為事件A,則A事件數包括兩類:抽取3個數全為偶數,或抽取3數中2個奇數1個偶數,前者C43,后者C41C52.∴A中基本事件數為C43+C41C52.∴符合要求的概率為C34+C14C25C39=1121.41.已知橢圓(a>b>0)的焦點分別為F1,F2,b=4,離心率e=過F1的直線交橢圓于A,B兩點,則△ABF2的周長為()

A.10

B.12

C.16

D.20答案:D42.如圖所示,已知PA切圓O于A,割線PBC交圓O于B、C,PD⊥AB于D,PD與AO的延長線相交于點E,連接CE并延長交圓O于點F,連接AF.

(1)求證:B,C,E,D四點共圓;

(2)當AB=12,tan∠EAF=23時,求圓O的半徑.答案:(1)由切割線定理PA2=PB?PC由已知易得Rt△PAD∽Rt△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD為公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四點共圓

(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2=313∴圓O的半徑313.43.直線kx-y+1=3k,當k變動時,所有直線都通過定點

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C44.在直角坐標系xoy

中,已知曲線C1:x=t+1y=1-2t(t為參數)與曲線C2:x=asinθy=3cosθ(θ為參數,a>0

有一個公共點在X軸上,則a等于______.答案:曲線C1:x=t+1y=1-2t(t為參數)化為普通方程:2x+y-3=0,令y=0,可得x=32曲線C2:x=asinθy=3cosθ(θ為參數,a>0

)化為普通方程:x2a2+y29=1∵兩曲線有一個公共點在x軸上,∴94a2=1∴a=32故為:3245.已知向量a=(-2,1),b=(-3,-1),若單位向量c滿足c⊥(a+b),則c=______.答案:設c=(x,y),∵向量a=(-2,1),b=(-3,-1),單位向量c滿足c⊥(a+b),∴c?a+c?b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是單位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故為:(0,1)或(0,-1).46.橢圓焦點在x軸,離心率為32,直線y=1-x與橢圓交于M,N兩點,滿足OM⊥ON,求橢圓方程.答案:設橢圓方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴橢圓方程為x24b2+y2b2=1.把直線方程代入化簡得5x2-8x+4-4b2=0.設M(x1,y1)、N(x2,y2),則x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴橢圓方程為25x2+85y2=1.47.已知拋物線方程為y2=2px(p>0),過該拋物線焦點F且不與x軸垂直的直線AB交拋物線于A,B兩點,過點A,點B分別作AM,BN垂直于拋物線的準線,分別交準線于M,N兩點,那么∠MFN必是()

A.銳角

B.直角

C.鈍角

D.以上皆有可能答案:B48.若雙曲線的焦點到其漸近線的距離等于實軸長,則該雙曲線的離心率為()

A.5

B.

C.2

D.答案:B49.如圖,圓與圓內切于點,其半徑分別為與,圓的弦交圓于點(不在上),求證:為定值。

答案:見解析解析:考察圓的切線的性質、三角形相似的判定及其性質,容易題。證明:由弦切角定理可得50.(1)用紅、黃、藍、白四種不同顏色的鮮花布置如圖一所示的花圃,要求同一區域上用同一種顏色鮮花,相鄰區域用不同顏色鮮花,問共有多少種不同的擺放方案?

(2)用紅、黃、藍、白、橙五種不同顏色的鮮花布置如圖二所示的花圃,要求同一區域上用同一種顏色鮮花,相鄰區域使用不同顏色鮮花.

①求恰有兩個區域用紅色鮮花的概率;

②記花圃中紅色鮮花區域的塊數為S,求它的分布列及其數學期望E(S).

答案:(1)根據分步計數原理,擺放鮮花的不同方案有:4×3×2×2=48種(2)①設M表示事件“恰有兩個區域用紅色鮮花”,如圖二,當區域A、D同色時,共有5×4×3×1×3=180種;當區域A、D不同色時,共有5×4×3×2×2=240種;因此,所有基本事件總數為:180+240=420種.(由于只有A、D,B、E可能同色,故可按選用3色、4色、5色分類計算,求出基本事件總數為A53+2A51+A55=420種)它們是等可能的.又因為A、D為紅色時,共有4×3×3=36種;B、E為紅色時,共有4×3×3=36種;因此,事件M包含的基本事件有:36+36=72種.所以,P(M)=72420=635②隨機變量ξ的分布列為:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=1第3卷一.綜合題(共50題)1.若直線l的方向向量為a,平面α的法向量為n,能使l∥α的是()A.a=(1,0,0),n=(-2,0,0)B.a=(1,3,5),n=(1,0,1)C.a=(0,2,1),n=(-1,0,-1)D.a=(1,-1,3),n=(0,3,1)答案:若l∥α,則a?n=0.而A中a?n=-2,B中a?n=1+5=6,C中a?n=-1,只有D選項中a?n=-3+3=0.故選D.2.甲,乙兩個工人在同樣的條件下生產,日產量相等,每天出廢品的情況如下表所列,則有結論:()

工人

廢品數

0

1

2

3

0

1

2

3

概率

0.4

0.3

0.2

0.1

0.3

0.5

0.2

0

A.甲的產品質量比乙的產品質量好一些

B.乙的產品質量比甲的產品質量好一些

C.兩人的產品質量一樣好

D.無法判斷誰的質量好一些答案:B3.直線x+y-1=0到直線xsinα+ycosα-1=0(<α<)的角是()

A.α-

B.-α

C.α-

D.-α答案:D4.已知三個向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:實數λ,μ,使p=λq+μr,則a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在實數,,使p=λq+μr,故向量p、q、r共面.5.已知圓C的極坐標方程是ρ=2sinθ,那么該圓的直角坐標方程為

______,半徑長是

______.答案:把極坐標方程是ρ=2sinθ的兩邊同時乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)為圓心,半徑等于1的圓,故為:x2+(y-1)2=1;1.6.函數f(x)=2x2+1,&x∈[0,2],則函數f(x)的值域為()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴設y=2t,t=x2+1∈[1,5],∵y=2t是增函數,∴t=1時,ymin=2;t=5時,ymax=25=32.∴函數f(x)的值域為[2,32].故為:C.7.設直線的參數方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直線的參數方程為x=2+12ty=3+32t(t為參數),消去參數化為普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故為:y=3x+3-23.8.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設正方體邊長是acm,根據題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.9.雙曲線x225-y29=1的兩個焦點分別是F1,F2,雙曲線上一點P到F1的距離是12,則P到F2的距離是()A.17B.7C.7或17D.2或22答案:由題意,a=5,則由雙曲線的定義可知PF1-PF2=±10,∴PF2=2或22,故選D.10.如圖示程序運行后的輸出結果為______.答案:該程序的作用是求數列ai=2i+3中滿足條件的ai的值∵最終滿足循環條件時i=9∴ai的值為21故為:2111.為了調查甲、乙兩個網站受歡迎的程度,隨機選取了14天,統計上午8:00-10:00間各自的點擊量,得如下所示的統計圖,根據統計圖:

(1)甲、乙兩個網站點擊量的極差,中位數分別是多少?

(2)甲網站點擊量在[10,40]間的頻率是多少?(結果用分數表示)

(3)甲、乙兩個網站哪個更受歡迎?并說明理由。答案:解:(1)甲網站的極差為73-8=65,乙網站的極差為71-5=66;甲網站的中位數是56.5,乙網站的中位數是36.5。(2)甲網站點擊量在[10,40]間的頻率是;(3)甲網站的點擊量集中在莖葉圖的下方,而乙網站的點擊量集中在莖葉圖的上方,從數據的分布情況來看,甲網站更受歡迎。12.在甲、乙兩個盒子里分別裝有標號為1、2、3、4的四個小球,現從甲、乙兩個盒子里各取出1個小球,每個小球被取出的可能性相等.

(1)求取出的兩個小球上標號為相鄰整數的概率;

(2)求取出的兩個小球上標號之和能被3整除的概率;

(3)求取出的兩個小球上標號之和大于5整除的概率.答案:甲、乙兩個盒子里各取出1個小球計為(X,Y)則基本事件共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)總數為16種.(1)其中取出的兩個小球上標號為相鄰整數的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種故取出的兩個小球上標號為相鄰整數的概率P=38;(2)其中取出的兩個小球上標號之和能被3整除的基本事件有:(1,2),(2,1),(2,4),(3,3),(4,2)共5種故取出的兩個小球上標號之和能被3整除的概率為516;(3)其中取出的兩個小球上標號之和大于5的基本事件有:(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6種故取出的兩個小球上標號之和大于5的概率P=3813.從數字1,2,3,4,5中任取兩個不同的數字構成一個兩位數,這個兩位數大于40的概率()A.15B.25C.35D.45答案:由題意知本題是一個古典概型,試驗發生包含的事件是從數字1,2,3,4,5中任取兩個不同的數字構成一個兩位數,共有A52=20種結果,滿足條件的事件可以列舉出有,41,41,43,45,54,53,52,51共有8個,根據古典概型概率公式得到P=820=25,故選B.14.已知圓C:x2+y2-4x-6y+12=0的圓心在點C,點A(3,5),求:

(1)過點A的圓的切線方程;

(2)O點是坐標原點,連接OA,OC,求△AOC的面積S.答案:(1)⊙C:(x-2)2+(y-3)2=1.當切線的斜率不存在時,對直線x=3,C(2,3)到直線的距離為1,滿足條件;當k存在時,設直線y-5=k(x-3),即y=kx+5-3k,∴|-k+2|k2+1=1,得k=34.∴得直線方程x=3或y=34x+114.(2)|AO|=9+25=34,l:5x-3y=0,d=134,S=12d|AO|=12.15.用演繹法證明y=x2是增函數時的大前提是______.答案:∵證明y=x2是增函數時,依據的原理就是增函數的定義,∴用演繹法證明y=x2是增函數時的大前提是:增函數的定義故填增函數的定義16.若A(-1,0,1),B(1,4,7)在直線l上,則直線l的一個方向向量為()

A.(1,2,3)

B.(1,3,2)

C.(2,1,3)

D.(3,2,1)答案:A17.下圖是由A、B、C、D中的哪個平面圖旋轉而得到的(

)答案:A18.若隨機變量ξ~N(2,9),則隨機變量ξ的數學期望c=()

A.4

B.3

C.2

D.1答案:C19.曲線C:x=t-2y=1t+1(t為參數)的對稱中心坐標是______.答案:曲線C:x=t-2y=1t+1(t為參數)即y-1=1x+2,其對稱中心為(-2,1).故為:(-2,1).20.已知四邊形ABCD,

點E、

F、

G、

H分別是AB、BC、CD、DA的中點,

求證:

EF=HG.答案:證明:∵E、F、G、H分別是AB、BC、CD、DA的中點,∴HG=12AC,EF=12AC,∴EF=HG.21.把下列直角坐標方程或極坐標方程進行互化:

(1)ρ(2cos?-3sin?)+1=0

(2)x2+y2-4x=0.答案:(1)將原極坐標方程ρ(2cosθ-3sinθ)+1=0展開后化為:2ρcosθ-3ρsinθ+1=0,化成直角坐標方程為:2x-3y+1=0,(2)把公式x=ρcosθ、y=ρsinθ代入曲線的直角坐標方程為x2+y2-4x=0,可得極坐標方程ρ2-4ρcosθ=0,即ρ=4cosθ.22.如圖,在正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點.用AB、AD、AA1表示向量MN,則MN=______.答案:∵MN=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故為12AB+12AD+12AA1.23.如圖,四邊形ABCD是圓O的內接四邊形,延長AB和DC相交于點P.若PB=1,PD=3,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.24.設m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()

A.若m∥n,m∥α,則n∥α

B.若α⊥β,m∥α,則m⊥β

C.若α⊥β,m⊥β,則m∥α

D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D25.如圖所示,圖中線條構成的所有矩形中(由6個小的正方形組成),其中為正方形的概率為

______.答案:它的長有10種取法,由長與寬的對稱性,得到它的寬也有10種取法;因為,長與寬相互獨立,所以得到長X寬的個數有:10X10=100個即總的矩形的個數有:100個長=寬的個數為:(1X1的正方形的個數)+(2X2的正方形個數)+(3X3的正方形個數)+(4X4的正方形個數)=16+9+4+1=30個即正方形的個數有:30個所以為正方形的概率是30100=0.3故為0.326.已知直線l的方程為x=2-4

ty=1+3

t,則直線l的斜率為______.答案:直線x=2-4

ty=1+3

t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.27.在平行六面體ABCD-A′B′C′D′中,向量是()

A.有相同起點的向量

B.等長的向量

C.共面向量

D.不共面向量答案:C28.已知F1(-2,0),F2(2,0)兩點,曲線C上的動點P滿足|PF1|+|PF2|

=32|F1F2|.

(Ⅰ)求曲線C的方程;

(Ⅱ)若直線l經過點M(0,3),交曲線C于A,B兩點,且MA=12MB,求直線l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|

=32|F1F2|

=6>|F1F2|=4,故曲線C是以F1,F2為焦點,長軸長為6的橢圓,其方程為x29+y25=1.(Ⅱ)方法一:設A(x1,y1),B(x2,y2),由條件可知A為MB的中點,則有x129+y125=1,

(1)x229+y225=1,(2)2x1=x2,

(3)2y1=y2+3.

(4)將(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理為4x129+4y125-125y1+45=0.將(1)代入上式得y1=2,再代入橢圓方程解得x1=±35,故所求的直線方程為y=±53x+3.方法二:依題意,直線l的斜率存在,設其方程為y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.設A(x1,y1),B(x2,y2),則x1+x2=-54k5+9k2,①x1x2=365+9k2.②因為MA=12MB,所以A為MB的中點,從而x2=2x1.將x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直線l的方程為y=±53x+3.29.用數學歸納法證明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,當n=1時,左端為______.答案:在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,當n=1時,3n+1=4,而等式左邊起始為1×4的連續的正整數積的和,故n=1時,等式左端=1×4=4故為:4.30.已知直線a、b、c,其中a、b是異面直線,c∥a,b與c不相交.用反證法證明b、c是異面直線.答案:證明:假設b、c不是異面直線,則b、c共面.∵b與c不相交,∴b∥c.又∵c∥a,∴根據公理4可知b∥a.這與已知a、b是異面直線相矛盾.故b、c是異面直線.31.從一批羽毛球產品中任取一個,質量小于4.8

g的概率是0.3,質量不小于4.85

g的概率是0.32,那么質量在[4.8,4.85)g范圍內的概率是()

A.0.62

B.0.38

C.0.7

D.0.68答案:B32.設拋物線x2=12y的焦點為F,經過點P(2,1)的直線l與拋物線相交于A、B兩點,若點P恰為線段AB的中點,則|AF|+|BF|=______.答案:過點A,B,P分別作拋物線準線y=-3的垂線,垂足為C,D,Q,據拋物線定義,得|AF|+|BF|=|AC|+|BD|=2|PQ|=8.故為833.已知點B是點A(2,-3,5)關于平面xOy的對稱點,則|AB|=()

A.10

B.

C.

D.38答案:A34.如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=6.

(1)求證:PA⊥B1D1;

(2)求平面PAD與平面BDD1B1所成銳二面角的余弦值.答案:以D1為原點,D1A1所在直線為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論