




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
編號無錫太湖學院畢業設計(論文)相關資料題目:餃子機及傳動系統設計信機系機械工程及自動化專業學號:0923039學生姓名:指導教師:(職稱:副教授)(職稱:)201目錄一、畢業設計(論文)開題報告二、畢業設計(論文)外文資料翻譯及原文三、學生“畢業論文(論文)計劃、進度、檢查及落實表”四、實習鑒定表無錫太湖學院畢業設計(論文)開題報告題目:餃子機及傳動系統設計信機系機械工程及自動化專業學號:0923039學生姓名:指導教師:(職稱:副教授)(職稱:)2012課題來源自擬題目科學依據(包括課題的科學意義;國內外研究概況、水平和發展趨勢;應用前景等)(1)課題科學意義餃子食品機械的應用前景和發展現狀餃子食品在我國歷史悠久,伴隨著幾千年的文明的發展已經成為我國食品文化中的代表,如餃子、包子、餛沌是主食的一部分;湯圓、月餅、粽子是傳統節日中必不可缺的食物。如今,經濟的迅速增長、人民生活水平的提高和生活節奏的加快,對食品行業提出了新的要求。而本人認為這些要求可以歸納為兩大類:其一是食品的質量:如食用口感、衛生狀況、營養含量等。其二便是食品供應的速度。而解決這兩個矛盾要求的辦法便是實現食品生產的機械化和自動化,通過機械動作可以極大程度的提高食品的生產率;采用環保的機械材料和嚴格的密封技術可以很好的保證食品衛生;而合理的工藝編排更能改善食品的口感。(2)餃子機的研究狀況及其發展前景目前國內外廠家在包餡夾餡食品機械化上的研究已經取得了一定的成果成功研發了餃子機、包子機、餛沌機、湯圓機、月餅機以及自動化程度更高的全自動萬能包餡機。因東西方飲食文化的差異,目前國外包餡成型類機械主要為日本所生產,如日產的自動萬能包餡機,其最大生產能力可達每小時8000個,且加工范圍極廣,能生產各式饅頭、包子、餃子、夾餡餅干、壽司、等等近百種產品,采用可拆卸料斗能實現快速更換餡料,內置的無級變速調控裝置可以實現皮和餡的任意配比。廣泛用于各種帶餡食品的加工。而國內相關機械雖然在自動化和多功能方面較之日本產品還有一定的差距,但是通過改革開放以后二十余年的發展亦取得了很大的進步。以上海滬信飲料食品機械有限公司生產的水餃機為例:配備1.1Kw的電動機,生產效率達每小時7000個。已相當接近日產餃子機的生產水平。每逢過時過節現做現賣餃子往往出現供不應求的現象。當然也有很多人選擇在家里自己做,卻需要提前半天甚至一天進行準備,而包餃子的時候更是要叫上好幾個親朋過來幫忙方可。因此如果能研究開發一種能夠以機械動作代替人工勞動的機器,那么除了可以節約大量的時間、降低餃子的生產成本、提高利潤之外,更可以免除人們冬日里冒寒排隊購物之苦,一舉多得。餃子生產機的初步目標確定為能夠實現餃子包餡成型工藝的機械化。未來可在此基礎上加以改進和擴展,以實現橫縱兩方向發展。即餃子生產全過程的無人干預自動化與多功能化。研究內容①熟悉餃子機的工作原理與結構;②熟悉餃子機傳動系統的布置與結構;③熟練掌握傳動系統的設計計算方法;④掌握CAD的使用方法;⑤能夠熟練使用UG進行三維的畫圖設計。擬采取的研究方法、技術路線、實驗方案及可行性分析(1)實驗方案對餃子機整體設計,擬定其傳動部分的結構、轉速等,使其能夠半自動的進行加工。(2)研究方法=1\*GB3①用CAD進行二維畫圖,對餃子機結構有個全面的了解。②對餃子的傳動部分進行計算與結構設計,使其提供合適的動力。研究計劃及預期成果研究計劃:2012年10月12日-20122013年1月12013年1月282013年3月4日-2013年4月12013年4月15日-2013年4月29日預期成果:達到預期的畢業設計要求,設計出的餃子機可以進行半自動加工,可以快速美觀的加工出餃子,并且傳動簡單緊湊、滿足工作要求。特色或創新之處①餃子機可以無需手工進行制作。②餃子制作過程安全,方便,快速,可以批量生產。③傳動路線簡單、緊湊,滿足餃子加工的要求。已具備的條件和尚需解決的問題①設計方案思路已經明確,已經具備機械設計能力和餃子機方面的知識。②進行結構設計的能力尚需加強。指導教師意見指導教師簽名:年月日教研室(學科組、研究所)意見教研室主任簽名:年月日系意見主管領導簽名:年月日英文原文wear181-183(1995)868-875CaseStudyTheoreticalandpracticalaspectsofthewearofvanepumpsPartB.AnalysisofwearbehaviourintheVickersvanepumptestA.Kunza,R.Gellrichb,G.Beckmannc,E.BroszeitaaInstituteofMaterialScience,TechnicalUniversityDarmstadt,P.O.Box111452,64229Darmstadt,GcmbUniversityforTechnol08y,EconomyandSocialScienceZittau/Goditz,FacukyofMaihematics,P.O.Box264,02763ZutaucPetersiliensrr.2d,03044Cottbus,Received16August1994;acceptedlNovember1994AbstractThewearbehaviourofthevanepumpusedinthestandardmethodforindicatingthewearcharacteristicsofhydraulicfluids(ASTMD2882/DIN51389)hasbeenexaminedbycomparisonofthecalculatedwearandexperimentaldatausingalubricantwithoutanyadditives.InadditiontothetestseriesaccordingtoDIN51389,temperatureprofilesfromthepumphavebeenanalysedusingthebulktemperaturesofthecontactingcomponentsandthetemperatureinthelubricationgapasinputdataforthewearcalculation.CartridgesusedintestsaccordingtotheGennanstandardhavebeenexaminedextensivelybeforeandaftereachruntoobtaininputdataforthemathematicalmodelandtoJocatewear.Ananalysisofthe:tluidpropertiesandaninvestigationoftheinnuenceofwearparticlesinthehydrauliccircuitwereperformed.Theexperimentalresultswerecomparedwiththewearprediction,whichwasverifiedbytheagreementintermsofload,temporalwearprogressandlocalwear.Conclusionshavebeendrawnwithregardtothevalidityoftheloadassumptionsandwearcalculation,aswellastothelimitsofapplicabilityofthismethodinthepresenceofadditives.Keywords:Vanepumps;Hydraulicfluids;Wearprediction;Vickersvanepumptest1.IntroductionEffortstodevelopamathematicaltoolforwearpredictionwillnotbesuccessfulwithoutconsideringwearanditsphenomena.ThetaskofPartBofthisstudyistodescribetheanalysisofthewearbehaviourinthetribosysteminvestigatedandhowtheknowledgeachievedinfluencesthecalculations.Inputdataarederivedfromthemeasurementofmechanicalandgeometricalquantities,suchasthehardness,stylusprofilometry,fluidpropertiesandcontactradii.Thermalquantitiesarealsoessentialforthemodellingoflubrication.Thecalculationsmustbeverifiedwithweardata.BecausethetribosystemtobeanalysedisthevanepumpemployedintheVickersvanepumptest,whichhasbeeninuseforabout40years,severalweardatacanbeusedforcomparisonbetweencalculatedandmeasuredwearresults.Thesearethewearmasses0043-1648/95/$09.50@1995ElsevierScienceS.A.AllrightsreservedSSDI0043-1648(94)07087-3aftereachtcstrun,theprogrcssionofwearovertimeandthelocalwearontheinnerringsurface;incombination,theseenableacomprehensivestatementtobemadeonthevalidityofthemathematicalmodeldescribedinPartA.2.ExperimentsAlIVickersvanepumptestsdescribedwererunwiththesamefiuid.ItisareferenceoiloftheGermanRcscarchAssociationforTransmissionTechnique(FVA),andisamineraloilwithoutanyadditives(FVA3).Thusthedisturbinginfluencesofadditivescanbeexcluded.2./.InputdataforcalculationFig.1liststheinputandoutputquantitiesofthecalculations.MostoftheinputparameterswerederivedsurfaceprofilescontactforceandcontactvelocitydynamicviscositycontactradiihardnessvaluesYoungsmoduli,Poissonnumbersandlubricationgapspecificshearenergydensities*pressureexponentc,fviscosity;tlubricationgaptemperatureRoughsurfuce←→shaarenergyhypot←→elastoliubiction↓Wm=f(t)Wf=f(ɑ)Fig.1.InputparametersandoutputquantitiesofthemathematicalmodelofPartA.Fig.2.CartridgeV104C:bushing,rotor,ring,bushing(abcwe),singlevane,pin(below).experimentallyfromallthecomponentsinvolvedbeforeandafteruseinthevanepumptests.Themechanicalcomponents,whichmustberenewedforeachtestrun,areshowninFig.2.Suchacartridgekitconsistsofarotor,ring,12vanes,bushingsandpin.Stylusprofilometrywasperformedontheinnersurfaceoftheringandonthetipsoftwovanesofthecartridgebeforeandaftereachtestrun.Earlierinvestigationshaveshownthattenparallelsectionsintheslidingdirectiononeachbodyaresufficienttodescribethesurfacetopographyinastatisticallysatisfactorymannerasatwo-dimensionalisotropicgaussianfieldaccordingtoRef.[1].Onlythehighpassfilteredcomponentsoftheprofile(samplinglength,1.5mm;cuto五0.25mm)wereusedtodeterminethespectralmomentsmo,m2,m4andtheparameterofroughnessa.Accordingtothepartitionofthecontactforceintodifferentloadingzones,thetopographicdataofthenewsurfaceswereusedforzoneIV(lowlevelload,seePartA).Fortheotherzoneswithhighercontactforces,theprofilesofthesurfacesinthefinalconditionwereused,whichcorrespondstotheappearanceoftheinnerringsurfaceafterthetestruns.Thecontactforceandcontactvelocitywerecalculatedwithdifferentfluidpressuresanddynamicforcesactingonthevanes,revolutionnumberandringradu,whereasthechangeincontactradiuswasdocumentedwithaprofileprojector.Becausetheringradiiaremuchlargerthar)theradiiofthevanesinthecontactzone,thevanescanbeassumedtobehertziancylindersslidingalongaplanesurfaceandthecontactradiiaresimplytheradiiofthevanetips.Eachvanetipwastwicedrawnupatmagnificationsof100:1andthecontactradiiandcontactlocationsweremeasuredwithastenciLMeanvaluesofthecontactradiiweretransferredtothecalculation,whichisbased(similartothesurfaceprofiles)onvanesinbothconditions.TheVickershardnessHVlOwasmeasuredontheringandthreevanesofeachcartridge.Thishardnessleadstoabetterreproducibilitythanmicrohardnessvalues,butduetothelargeindenterload,itcouldonlybetakenafterthetestruns.Thereforechangesinhardnessvaluescouldnotberegistered.TheYoung'smoduli,Poissonnumbersanddensitiesofthering(AISI52100)andvanematerials(M2regC)arethefirstinputparametersintheshearenergyhypothesisandwereobtainedfromtheliterature.Thespecificshearenergydensities(seePartA)arematerialspecificconstants[2l.Thefluidproperties(Fig.1)weremeasured,derivedfromtheliteratureorcalculated.Toobtainthedynamicviscosity,thedensitiesandkinematicviscositiesat20,40and800Cweremeasured.BecausethefluidisareferenceoilofFVA,thepressureexponentoftheviscosityisgiven[3].Thetemperatureinthelubricationgapbetweentheringandvaneswasapprox:imatedbymeasurementsandcalculationsdescribedbelow.2.2.TemperatureprofilesTemperaturemeasurementwasperformedtoobtaininformationonhowaheatabletribometermustbecontrolledtosimulatethewearbehaviourofthevanepump.Thereforeshortenedtestrunswerecarriedoutuntiltemperatureswerestabilized.These10hvanepumptestsdeliveredtheinputdatafortheapproximationofthelubricationgaptemperatureinthering-vanecontact,aswellasadditionalwearmassestobecomparedwiththecalculatedprogressiortofwearintime.ThesamplingprinciplesforacquiringthetemperatureprofilesofthevanepumpareillustratedinFig.3.Thetemperatureofthelubricantinthegapbetweentheringandvaneswasestimatedtobeequaltoorgreaterthanthebulktemperatureontheinnerringsurface.Followingthefirstmainstatementofthermodynamics,theheatfluxQmpintothecomponentsofthepumpcanbederivedfromwiththefluidasthemediumforenergytransport.Qa,mpcanonlybetransferredtothecomponentsshowninFig.2.Forthesametemperaturedifferencesandmaterials,thisheatnUXcanbedividedintosinglecomponentfluxesaccordingtotherelationofmasses.ThederivedfluxQringistheheatwhichflowsinacertaintimeperiodinaradialdirectionthroughthering.Withtheknowntemperaturesontheouterringsurface,thebulktemperaturesontheinnerringsurfacecanbecalculatedandtransferredtothemodelofelastohydrodynamiclubrication.AlltestrunswiththeVickersvanepumpV104CwereperformedonatestrigaccordingtoASTMD2882/DIN51389,whichisshownschematicallyinFig.4.Thesestandardsdescribetheprocedurefortestingtheanti-wearpropertiesofhydraulicfiuids.TostarttheVickersvanepumptestaccordingtotheGermanstandard,thesystempressuremustberaisedinstepsof2MPaevery10min,beginningat2MPa,untilafinalpressureof14MPaisreached.Atthisstage,thefluidtemperaturemeasurcdbcforethepump(seeFig.4)mustbecontrolledtoguaranteeakinematicviscosityof13mm2S-iattheinletforevery:tluidtested.Theseconditionsmustbemaintaineduntilthetestisabortednormallyafter250hbyopeningthebypassofthepressurecontrolvalvebeforethemotorisstopped.Byacomparisonofthewearachievedontheringandvaneswiththeupperwearlimits,theanti-wearpropertiesofthefluidtestedcanbederived.ForperformingthetestssafelywiththefluidFVA3,itwaspreheatedt0400Candcirculatedinapressurefreeway.ThedamagewhichmayoccurduringthecriticalfirsthouroftherunscanbeavoidedusingTiNcoatedbushings[4].Forcomparisonwiththeresultsderivedfromcomputation,thewearproducedintheserunsmustbedocumentedasamounts,bothlocallyandtemporally.Thewearmasseswerederivedfromtheweightdifferencesoftheringandvanesbeforeandaftereachrun.Theywereobtainedfromasequenceoffour250htestrunsandtw010hrunsfortemperaturemeasurement.Thelocallinearamountofwearwasdocumentedbythedifferencesintheinnerringradiiperdegreeofrevolution,whichweremeasuredbysurfacedigitizationalongtheinnerringsurfaceatthreedifferentpositionsoftheringwidthbeforeandafterthetesiruns.Inearlierinvestigations[5],thewearprogressionovertimeofthevaneswasmeasuredunderidenticaltestingconditions,exceptforalowerfluidtemperature.Forthisexperiment,theradiotracertechniquewasused.Twovanetipsinthesetof12vanesofeachcartridgewereradiologicallyactivatedbybombardmentwithprotons.Adetectorclosetothepumpbodyallowedthedecreaseinradiologicalactivitytobemonitoredcontinuously,whichwasfoundtobereciprocallyproportionaltothelinearamountofvanewearasafunctionoftime[5l.Duetothegoodtemperingpropertiesofthevanematerial(M2regC),withaspecificsecondaryhardnessmaximumbetween450and5500C,theinfiuenceoftheactivationprocessat2200Conthewearbehaviouroftheactivatedzoneofthevanetipscouldbeexcluded.Phyd+Pfric-Qcomp-Qfluid=0(1)Qfluid=mcfluid△Tfluid(2) Fig.4.Hydrauliccircuitofthetestrig.3resultlinesthestatisticalreliabilityofsurfacemodellingasatwo-dimensionalisotropicgaussianfield.Althoughonlythefilteredprofilesscannedintheslidingdirectionareshown,adistinctchangeinsurfaceroughnessisobvious.Agoodrepresentationofthewearphenomena(seePartA)bytheinputdataforthewearcalculationderivedfromtheseprofilescanbeassumed.ThechangeinthevanetipshapeoverthetestingperiodisdocumentedinPartA.Thehardnessvaluesfortheringsandvanesvariedfrom743t0769HVlO(rings)andfrom778t0816HVlO(vanes).Inallcases,thevanesofonecartridgehadhigherhardnessvaluesthanthering,butthesedifferencesvariedandhadalargeinfluenceonthewearcalculation(seePartA).Themeasurementofthefiuidpropertiesled,incombinationwiththekinematicviscosityprescribedbytheGermanstandard,toafluidtemperatureof84-86oCatthepumpinlet.Togetherwiththeothertemperaturemeasurementsacquiredinthe10hruns,thesetemperatureprofilesareillustratedinFig.6.TestNumbertwasfoundthat,inaboutlh,alltemperatureswerestabilized.Itshouldbenotedthatalltemperaturesinoronthepumpcomponentsarehigherthanthefluidtemperaturemeasuredbehindthepump.Thehighesttemperatureswerefoundontheouterringsurface,withsignificantdifferencesdependingonthelocationofthethermocouples.Thecalculationofthebulktemperaturesontheinnerringsurfaceviatheheatfluxbalanceeliminatedtheinfiuenceofthedifferentringthicknessesatthescanlocations.Dependingontbesedifferentdistancesforheatconduction,between4and70Cmustbeaddedtothemeanvaluesofthecomponenttemperaturestoobtainthesurfacetemperatures.Thesevaluesare20c70higherthanthefluidtemperaturemeasuredbehindthepump,whichwasusedasinputdataforthewearcalculation.Duringthelhstartingphaseofthetestruns,thestepwiseincreaseinsystempressureleadstoanimmediateeffectonthecomponenttemperatures,whereasthefluidtemperatureincreaseswithamoreorlessconstantgradient,whichdemonstratestheassociationofloadandfrictionalheat.Thefour250htestrunscausedamixtureofadhesiveandabrasivewearatahighlevel(seePartA).ThewearresultsachievedareshowninFig.7.RingwearincreasedfromtestItotest3.Thereforethe12pmfilternormallyusedwasreplacedafterthethirdtestbya3pmfilter,andapressure-freerunwithanadditionalcartridgewasstartedasacleaningprocedure.Duetothefilterchange,thereservoirneededtoberefilledbyaboutlOv-/oofitscontentwithfreshfluidbeforecontroltest4,againwitha12ymfilter,wasstarted.Inadditiontotheseeffortstominimizepossiblewearparticleinfluence,acomparisonoftheviscosityandneutralizationnumberwiththoseoffreshfluidshowedonlyaninsignificantriseinviscosityandalowneutralizationnumberafter750hoftesting.Intest4,thehighestvalueforringandvanewearataconstantlevelwasachieved.Foralltests,thelinearamountofwearontheringsurfaceshowedastrongdependenceonthemeasurementlocationwithstrictlylimitedareasofhighandlowwear.TheresultsofcontinuousvanewearmonitoringareshowninFig.8inadditiontotheprincipleofmeasurement.Degressivewearlapswerefound,wherethestationarylevelwasreachedafter100h.4.DiscussionBeforethewearcalculationscanbeverifiedbyweardata,itmustbedemonstratedthattheassumptions,measurementsandcalculationsformingtheinputforthemathematicalmodelcorrelatewiththewearmeasured.Fig.9comparesthecalculatedloadnthering-vanecontact,derivedfromthecontactforceandchangingshapesofthevanetipsintroducedinPartA,withthemeasuredlinearamountsofwearalongtheinnerringsurfaceandthetemperaturedistributionatthesameplace.Thereisqualitativelygoodcorrelationfortheprogressionofloadandwearwithcharacteristicleapsatalmostthesamedegreeofrevolution.Inaddition,hightemperature,resistingdynamicequilibrium,isfoundwheretheloadandweararehighandviceversa.Thereforeitisabsolutelycorrecttocreatedifferentloadingzones(accordingtofig.2inPartA)asinputforthewearcalculations.Althoughafewdifferencesinqualitycanbefoundinthepro-gressionofhertzianpressureandthelinearamountsofwear,seriousmistakesinthecollectionofinputinformationareprobablyavoided,sothattheverificationofthecalculatedwearresultsbyexperimentaldatawillshowthevalidityofthemathematicalmodel.Forlocalamountsoflinearringwear,thisverificationcanbeseeninFig.10.Itshouldbenotedthatthecalculationandexperimentalresultsareplacedinthesamedecade,theprogressionsshowthecharacteristicleapssimilartotheloadinFig.9atalmostthesamedegreesandtheamountsaredirectlycomparable.Theloadingzonesareadaptedtotheprogressionofthecontactforce(seePartA),whichthecalculatedlinearwearmustfollowaswellasthehertzianpressure.Thedifferentshapesofthetwographsbetween300and700(2100and2500)turnanglesremainunsatisfactory,becausethisshowsanuncertaintyintheloadassumptions.Thefluidpressureinacellformedbytwovanes,rotorandringwasassumedtobesegmentallyconstant.Thereforethecontactforcewasdeterminedtofollowtheseassumptions,whichneedtobedempressure)inthering-vanecontact,derivedfromthecontactforceandchangingshapesofthevanetipsintroducedinPartA,withthemeasuredlinearamountsofwearalongtheinnerringsurfaceandthetemperaturedistributionatthesameplace.Thereisqualitativelygoodcorrelationfortheprogressionofloadandwearwithcharacteristicleapsatalmostthesamedegreeofrevolution.Inaddition,hightemperature,resistingdynamicequilibrium,isfoundwheretheloadandweararehighandviceversa.Thereforeitisabsolutelycorrecttocreatedifferentloadingzones(accordingtofig.2inPartA)asinputforthewearcalculations.Althoughafewdifferencesinqualitycanbefoundintheprogressionofhertzianpressureandthelinearamountsofwear,seriousmistakesinthecollectionofinputinformationareprobablyavoided,sothattheverificationofthecalculatedwearresultsbyexperimentaldatawillshowthevalidityofthemathematicalmodel.Forlocalamountsoflinearringwear,thisverificationcanbeseeninFig.10.Itshouldbenotedthatthecalculationandexperimentalresultsareplacedinthesamedecade,theprogressionsshowthecharacteristicleapssimilartotheloadinFig.9atalmostthesamedegreesandtheamountsaredirectlycomparable.Theloadingzonesareadaptedtotheprogressionofthecontactforce(seePartA),whichthecalculatedlinearwearmustfollowaswellasthehertzianpressure.Thedifferentshapesofthetwographsbetween300and700(2100and2500)turnanglesremainunsatisfactory,becausethisshowsanuncertaintyintheloadassumptions.Thefluidpressureinacellformedbytwovanes,rotorandringwasassumedtobesegmentallyconstant.Thereforethecontactforcewasdeterminedtofollowtheseassumptions,whichneedtobedem-onstratedbycorrespondingexperiments.Comparedwiththemeasurement,thecontactforceinloadingzoneIwasassumedtobetoohighandcausedvaluesabovetheexperimentaldata.Thiswasduetodifficultiesinmodellingthelargevarietyofvanetipgeometrieswhichcanappearinonecartridgeandstronglydeterminethecontactforceinthisregion.Moreinformationaboutthereliabilityofloadassumptionscouldhavebeenobtainedfromaknowledgeofthebulksurfacetemperatures,whichwerenotmeasuredorcalculated.Despiteotherdeviationsofthetwoprogressions,theareasbeloweachgrapharecomparable,sothatagoodcorrelationbetweencalculatedandmeasuredwearmassescanbeexpected.Forvanewearmassesafter250hoftesting,theexpectationshavebeenfulfilledinasatisfactorymanner,Iftheprogressionofthevanewearmassintime(seePartA)isverifiedbythemeasuredamountsoflinearwear(Fig.8),goodcorrelationoftheprogressionscanbefound.Forbothvalues,thestationaryphaseisreachedafter100h.Thedifferencesinthegradientsduringthestationaryphasemaybecausedbythedifferenttcmperaturesofthetwotestseries.Thedif-ferencesintheringwearmassescanbeinterpretedasscattering(whichisdependentonthetestingprocedure),becausethethermalagingandtheinfluenceofwearparticlescanbeneglectcd,especiallyiftherechargewithfreshfluidistakenintoconsideration.ThusthesCwcarresultsarcalsowellapproximatedbythecalculation,becausethecalculatedaveragewearmassaftcr250hisplacedinthemiddleofthefourexperimentalresults(seePartA).Thisissupportedbythefactthatthewearmassesachievedintheshort-timerunsaresituatedclosetothecalculatedprogressionofthewearmassesforthattime.conclusionIThefollowingconclusionscanbedrawn.(1)Forthewearsystem,VickersvanepumpV104C/lubricantFVA3,agoodcorrelationbetweenloadandwearlocationontheringwasfound,whichisassociatedwithacorrespondingtemperaturedistribution.(2)Theloadassumptionsarewidelyconfirmed.(3)ThemathematicalmodelintroducedinPartA,withinputinformationbasedontheseassumptions,deliverswearmasses,progressionsofwearmassesintimeandlocalamountsoflinearwearwhichcorrelatewithcorrespondingexperiments.(4)Thismathematicalmodelbasedontheshearenergyhypothesisisaqualifiedinstrumentforretracingthewearbehaviourinfrictionregimeswithboundarylubrication,withtheexclusionofadditives.(5)Largeeffortsarenecessarytoobtainqualifiedinputdata.(6)Wearpredictionisnotpossible,becauseseveralparametersderivedfrominvestigationsoncomponentsintheirfinalconditionneedtobeusedasinputdata.Futureinvestigationsarerequired.(1)Toimprovetheassumptionsonthestructureofthefiuidpressureinthepump.(2)Todevelopamethodtoobtainallinputdatafromcomponentsinthenewconditiontoallowrealwearprediction.(3)Toenlargethetheorywithanempiricalstatementdescribingtheinfluenceofadditives.ExperimentsandinvestigationssimilartothoseinthispaperhavebeenperformedwiththesamefluidcontainingadditivesandwithacommerciallyavailableHMfluid.中文譯文葉片泵磨損理論和實踐方面第二部分:關于維克斯公司葉片泵實驗磨損情況分析Kunza,R.Gellrichb,G.Beckmannc,E.Broszeitaa材料科學研究所,達姆城工業大學,P.O.Box111452,64229達姆城,德國b齊陶摘要葉片泵的磨損狀況標準方法是指示水力的失效流體(美國材料試驗學會D2882/德國工業標準51389)已經被通過用沒有任何添加劑的潤滑劑得到的失效計算和審查實驗數據審查。除了依照德國工業標準得到的檢驗系列之外,泵的剖面溫度已經用來自絕大部分聯系原件和間縫潤滑之間的溫度作為失效計算的原始數據。根據德國標準檢驗的卷筒已經被前前后后嚴格的測試為了獲得精確模型的原始數據和確定磨損位置。執行流體的性能分析和在液壓環路中粒子磨損的調查。實驗結果和預測的相比較,預測的是由協議核實負荷條件,時間磨損過程和當地的磨損證實的。已經得出關于合理的載荷消耗和失效校核的結論,就像這種方法在添加劑存在的適用性范圍。1.說明在沒有考慮到失效磨損的一些現象時,努力去開發一種精確工具去預測磨損失效是不會成功的。本研究第二部分的目的就是為了描述磨損行為在調查的tribo系統中的分析和怎樣運用知識完成影響計算。初始數據來源于機械的測量和幾何量,比如硬度,針式輪廓,流體特性和接觸半徑。熱量對模型潤滑也是必不可少的的數據量。2.實驗所有的維克斯葉片泵的實驗都是用同種的流體。它是德國一個研究協會為傳輸技術涉及的一種油FVA,它是一種沒有任何添加劑的礦物質油FVA3。因此可以排除添加劑所引起的后果。2.1計算原始數據數據1.列出輸入和輸出的計算量。大部分參數來源于:粗糙度流體性質平面度接觸力和接觸速度動態粘度接觸半徑粘性的壓力指數硬度標準間隙潤滑溫度泊松數和密度實際單位剪切力隨即模擬的粗糙表面←→剪切力假說←→彈性液壓潤滑↓Wm=f(t)Wf=f(ɑ)圖1.數學模型的第一部分的原始參數和實際工程量圖2.卷筒V104C:套管,轉子,定子,上套管,單一葉片,釘所有涉及實驗前后的原件在葉片泵測試都用到了。在每個實驗中的機械原件都不一樣,比如在圖2中卷筒由轉子,定子,12個輪葉,套管和釘組成。在每一個實驗前后古老的輪廓測定法會在卷筒的環的內表面和兩個葉片的頂端測定。根據專家所說,較早的研究已經指出十個類似的部分在每個部分的不同方向由統計學來描述表面度是足夠的。只有輪廓中重要的濾過部件(采樣長度1.5mm,剪下0.25mm)用于測定光譜時刻m0,m2,m4和粗糙度ɑ。依據不同承載位置的接觸力的劃分,新表面的地形圖數據被用于平面Ⅳ(低負載,參考partA)。對于另外一些存在高載荷的平面,最后一個條件的表面的輪廓被用了,在試運轉之后證明外表內環符合要求。盡管接觸半徑的變化被記錄在剖面投光器,接觸力和接觸速度還是根據葉片上不同的流體壓力,動力,旋轉量和環半徑計算得出。因為定子的半徑遠遠大于在接觸位置葉片的半徑,葉輪能被假定變得赫茲圓柱體滑動向前一個平的表面和接觸半徑只是葉輪的半徑。每一個葉片的尖端的損耗是100:1的兩倍,并且接觸半徑和接觸為定位由模板測量。接觸半徑的平均值由計算得到,而計算是根據兩種不同的條件。測得定子和三個葉片的硬度為10HV,這個硬度值決定了它比微硬度值有更好的彈性,但是由于存在大的切應力,所以它只能在試驗之后得到。所以硬度標準不能被注冊。泊松數,模數,定子的密度和葉片原料是從文獻中得到的剪切力假說中最基本的參數。實際的單位剪切力是不變的。數據1.中的流體性質是由計算和文獻中得到的。密度和運動粘性分別在20℃、40℃和80℃測量而得到動態粘性參數。粘性的壓力指數由德國傳輸工程動力研究協會給出。在定子和葉片間隙間的潤滑溫度接近于測定和計算得到的。2.2溫度分布測量溫度是為了獲得需要多少加熱量能使得接近葉片泵的磨損現象。因此要不斷縮短實驗期直到溫度穩定為止。這些10h輪葉泵檢驗為近似值遞送輸入數據潤滑間隙溫度在這定子與輪葉的接觸,連同另外磨耗集合被與磨耗的有計劃級數相較及時。葉片泵的溫度分布在數據3.通過抽樣原理論證。在定子和葉片間隙中的潤滑溫度估計會等于或稍高于內部定子主題表便的溫度。其次主要的熱力學報表,熱流量Qcomp可由一下得數據3.溫度測量原理Phyd+Pfric-Qcomp-Qfluid=0(1)和Qfluid=mcfluid△Tfluid(2)圖3.流體作為能量運輸的媒介,熱量通量可以在圖2.中體現出來。同樣的溫度差異和材料的熱通量可分為單根據構件的關系fhrxes腫塊。推導過程中產生的熱量通量向是流動的在一段時間的徑向通過定子。與已知的溫度在外環線表面上的溫度,大部分的內圈的表面能計算和轉移到模型。2.3.資料比較所有的測試運行與維氏的葉片泵V104C試驗臺進行了按照ASTM(美國材料試驗協會)D嗎2882/DIN51389位,這體現schematically圖4。這些標準描述程序進行測試抗磨液壓流體的性質。開始葉片泵試驗的維氏據德國標準、系統壓力必須得到提高的腳步每隔10分鐘的2兆帕,開始在2兆帕,直到有一個最后的壓力達到14個兆帕。在這一階段,泵的流體溫度測量之前(見圖4)必須進行控制,在進口為每個流體進行測試保證了運動學13mm2s-1。這些條件必須持續到本測試是中止250小時之后通常通過打開旁路的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 東北證券筆試題庫及答案
- 打造智慧型數字圖書館的資源管理與服務創新
- 培養新型職業能力所需的數位教育資源設計策略
- 教育創新青年的責任與擔當
- 醫療診所如何利用IT進行全面升級與改造
- 廣西河池少數民族文化資源融入高中思政課路徑探析
- 基于數字資源的課堂教學模式創新研究
- 孔隙壓力對巖體蠕變特性的影響及機制研究
- 2025年醫保知識考試題庫及答案:基礎政策解讀與政策法規試題
- 提升倉庫員工歸屬感的措施計劃
- 《碳計量》教學大綱
- 公司“三重一大”決策制度實施辦法
- 商務談判說課精課件
- 微信視頻號代運營合同范本
- 【基于近五年數據的鴻星爾克財務報表分析15000字】
- CNN 卷積神經網絡介紹
- 北大強基試題
- 把未來點亮歌詞打印版
- 四級下冊英語期末測試卷深圳版
- 健康安全危險源識別、風險評估和風險控制表
- 摩托車不過戶免責協議(2篇)
評論
0/150
提交評論