浙江臺州中學2021-2022學年高考數學倒計時模擬卷含解析_第1頁
浙江臺州中學2021-2022學年高考數學倒計時模擬卷含解析_第2頁
浙江臺州中學2021-2022學年高考數學倒計時模擬卷含解析_第3頁
浙江臺州中學2021-2022學年高考數學倒計時模擬卷含解析_第4頁
浙江臺州中學2021-2022學年高考數學倒計時模擬卷含解析_第5頁
免費預覽已結束,剩余13頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.2.已知集合,,則為()A. B. C. D.3.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}4.“是函數在區間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.設正項等比數列的前n項和為,若,,則公比()A. B.4 C. D.26.等比數列的前項和為,若,,,,則()A. B. C. D.7.關于圓周率π,數學發展史上出現過許多很有創意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發,我們也可以通過設計下面的實驗來估計的值:先請全校名同學每人隨機寫下一個都小于的正實數對;再統計兩數能與構成鈍角三角形三邊的數對的個數;最后再根據統計數估計的值,那么可以估計的值約為()A. B. C. D.8.在等差數列中,若,則()A.8 B.12 C.14 D.109.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標原點若,則直線與的斜率之積為()A. B. C. D.10.已知的展開式中第項與第項的二項式系數相等,則奇數項的二項式系數和為().A. B. C. D.11.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.12.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的二項展開式中,含項的系數為__________.14.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.15.正四棱柱中,,.若是側面內的動點,且,則與平面所成角的正切值的最大值為___________.16.若關于的不等式在時恒成立,則實數的取值范圍是_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面ABCD為菱形,平面ABCD,BD交AC于點E,F是線段PC中點,G為線段EC中點.Ⅰ求證:平面PBD;Ⅱ求證:.18.(12分)已知函數.(1)當時,求不等式的解集;(2)若的解集包含,求的取值范圍.19.(12分)已知等差數列滿足,公差,等比數列滿足,,.求數列,的通項公式;若數列滿足,求的前項和.20.(12分)已知函數.(1)若,求不等式的解集;(2)已知,若對于任意恒成立,求的取值范圍.21.(12分)已知函數,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.22.(10分)在考察疫情防控工作中,某區衛生防控中心提出了“要堅持開展愛國衛生運動,從人居環境改善、飲食習慣、社會心理健康、公共衛生設施等多個方面開展,特別是要堅決杜絕食用野生動物的陋習,提倡文明健康、綠色環保的生活方式”的要求.某小組通過問卷調查,隨機收集了該區居民六類日常生活習慣的有關數據.六類習慣是:(1)衛生習慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規律狀況類.經過數據整理,得到下表:衛生習慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規律狀況類有效答卷份數380550330410400430習慣良好頻率0.60.90.80.70.650.6假設每份調查問卷只調查上述六類狀況之一,各類調查是否達到良好標準相互獨立.(1)從小組收集的有效答卷中隨機選取1份,求這份試卷的調查結果是膳食合理狀況類中習慣良好者的概率;(2)從該區任選一位居民,試估計他在“衛生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣的概率;(3)利用上述六類習慣調查的排序,用“”表示任選一位第k類受訪者是習慣良好者,“”表示任選一位第k類受訪者不是習慣良好者().寫出方差,,,,,的大小關系.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據,可知命題的真假,然后對取值,可得命題的真假,最后根據真值表,可得結果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點睛】本題主要考查對命題真假的判斷以及真值表的應用,識記真值表,屬基礎題.2.C【解析】

分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.3.D【解析】

解一元二次不等式化簡集合,再由集合的交集運算可得選項.【詳解】因為集合,故選:D.【點睛】本題考查集合的交集運算,屬于基礎題.4.C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.5.D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數列得,∴,故選:D.【點睛】本題主要考查等比數列的性質的應用,屬于基礎題.6.D【解析】試題分析:由于在等比數列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點:等比數列.7.D【解析】

由試驗結果知對0~1之間的均勻隨機數,滿足,面積為1,再計算構成鈍角三角形三邊的數對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據題意知,名同學取對都小于的正實數對,即,對應區域為邊長為的正方形,其面積為,若兩個正實數能與構成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點睛】本題考查線性規劃可行域問題及隨機模擬法求圓周率的幾何概型應用問題.線性規劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關的幾何概型時,關鍵是弄清某事件對應的面積,必要時可根據題意構造兩個變量,把變量看成點的坐標,找到試驗全部結果構成的平面圖形,以便求解.8.C【解析】

將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數列的基本量的求解,難度較易.已知等差數列的任意兩項的值,可通過構建和的方程組求通項公式.9.A【解析】

設出A,B的坐標,利用導數求出過A,B的切線的斜率,結合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質,考查直線和拋物線的位置關系,意在考查學生對這些基礎知識的掌握能力和分析推理能力.(2)解答本題的關鍵是解題的思路,由于與切線有關,所以一般先設切點,先設A,B,,再求切線PA,PB方程,求點P坐標,再根據得到最后求直線與的斜率之積.如果先設點P的坐標,計算量就大一些.10.D【解析】因為的展開式中第4項與第8項的二項式系數相等,所以,解得,所以二項式中奇數項的二項式系數和為.考點:二項式系數,二項式系數和.11.D【解析】

先根據三視圖還原幾何體是一個四棱錐,根據三視圖的數據,計算各棱的長度.【詳解】根據三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.12.B【解析】

取的中點,連接、,推導出,設設球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計算出球的半徑,再利用球體的表面積公式可得出結果.【詳解】取的中點,連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設球心為,和的中心分別為、.由球的性質可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.【點睛】本題考查三棱錐外接球表面積的計算,解題時要分析幾何體的結構,找出球心的位置,并以此計算出球的半徑長,考查推理能力與計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【詳解】,由,可得.含項的系數為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.14.【解析】

由已知可得,結合雙曲線的定義可知,結合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質.本題的關鍵是根據幾何關系,分析出.關于圓錐曲線的問題,一般如果能結合幾何性質,可大大減少計算量.15.2.【解析】

如圖,以為原點建立空間直角坐標系,設點,由得,證明為與平面所成角,令,用三角函數表示出,求解三角函數的最大值得到結果.【詳解】如圖,以為原點建立空間直角坐標系,設點,則,,又,得即;又平面,為與平面所成角,令,當時,最大,即與平面所成角的正切值的最大值為2.故答案為:2【點睛】本題主要考查了立體幾何中的動點問題,考查了直線與平面所成角的計算.對于這類題,一般是建立空間直角坐標,在動點坐標內引入參數,將最值問題轉化為函數的最值問題求解,考查了學生的運算求解能力和直觀想象能力.16.【解析】

利用對數函數的單調性,將不等式去掉對數符號,再依據分離參數法,轉化成求構造函數最值問題,進而求得的取值范圍。【詳解】由得,兩邊同除以,得到,,,設,,由函數在上遞減,所以,故實數的取值范圍是。【點睛】本題主要考查對數函數的單調性,以及恒成立問題的常規解法——分離參數法。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)見解析.【解析】分析:(1)先證明,再證明FG//平面PBD.(2)先證明平面,再證明BD⊥FG.詳解:證明:(1)連結PE,因為G.、F為EC和PC的中點,,又平面,平面,所以平面(II)因為菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因為平面,平面,且,平面,平面,∴BD⊥FG.點睛:(1)本題主要考查空間位置關系的證明,意在考查學生對這些基礎知識的掌握水平和空間想象轉化能力.(2)證明空間位置關系,一般有幾何法和向量法,本題利用幾何法比較方便.18.(1);(2).【解析】

(1)對范圍分類整理得:,分類解不等式即可.(2)利用已知轉化為“當時,”恒成立,利用絕對值不等式的性質可得:,問題得解.【詳解】當時,,當時,由得,解得;當時,無解;當時,由得,解得,所以的解集為(2)的解集包含等價于在上恒成立,當時,等價于恒成立,而,∴,故滿足條件的的取值范圍是【點睛】本題主要考查了含絕對值不等式的解法,還考查了轉化能力及絕對值不等式的性質,考查計算能力,屬于中檔題.19.,;.【解析】

由,公差,有,,成等比數列,所以,解得.進而求出數列,的通項公式;當時,由,所以,當時,由,,可得,進而求出前項和.【詳解】解:由題意知,,公差,有1,,成等比數列,所以,解得.所以數列的通項公式.數列的公比,其通項公式.當時,由,所以.當時,由,,兩式相減得,所以.故所以的前項和,.又時,,也符合上式,故.【點睛】本題主要考查等差數列和等比數列的概念,通項公式,前項和公式的應用等基礎知識;考查運算求解能力,方程思想,分類討論思想,應用意識,屬于中檔題.20.(1)或;(2).【解析】

(1)時,分類討論,去掉絕對值,分類討論解不等式.(2)時,分類討論去絕對值,得到解析式,由函數的單調性可得的最小值,通過恒成立問題,得到關于的不等式,得到的取值范圍.【詳解】(1)因為,所以,所以不等式等價于或或,解得或.所以不等式的解集為或.(2)因為,所以,根據函數的單調性可知函數的最小值為,因為恒成立,所以,解得.所以實數的取值范圍是.【點睛】本題考查分類討論去絕對值,分段函數求最值,不等式恒成立問題,屬于中檔題.21.(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數公式及倍角公式將的解析式化為一個復合角的三角函數式,再利用正弦型函數的最小正周期計算公式,即可求得函數的最小正周期;(2)由(1)得函數,分析它在閉區間上的單調性,可知函數在區間上是減函數,在區間上是增函數,由此即可求得函數在閉區間上的最大值和最小值.也

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論