2023學年福建省連城高考數學倒計時模擬卷含解析_第1頁
2023學年福建省連城高考數學倒計時模擬卷含解析_第2頁
2023學年福建省連城高考數學倒計時模擬卷含解析_第3頁
2023學年福建省連城高考數學倒計時模擬卷含解析_第4頁
2023學年福建省連城高考數學倒計時模擬卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.己知拋物線的焦點為,準線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.62.已知數列滿足,(),則數列的通項公式()A. B. C. D.3.已知函數,其圖象關于直線對稱,為了得到函數的圖象,只需將函數的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變4.設函數的導函數,且滿足,若在中,,則()A. B. C. D.5.設正項等比數列的前n項和為,若,,則公比()A. B.4 C. D.26.已知復數z1=3+4i,z2=a+i,且z1是實數,則實數a等于()A. B. C.- D.-7.設,,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件8.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.9.下圖是民航部門統計的某年春運期間,六個城市售出的往返機票的平均價格(單位元),以及相比于上一年同期價格變化幅度的數據統計圖,以下敘述不正確的是()A.深圳的變化幅度最小,北京的平均價格最高B.天津的往返機票平均價格變化最大C.上海和廣州的往返機票平均價格基本相當D.相比于上一年同期,其中四個城市的往返機票平均價格在增加10.若函數有且只有4個不同的零點,則實數的取值范圍是()A. B. C. D.11.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.201712.設過定點的直線與橢圓:交于不同的兩點,,若原點在以為直徑的圓的外部,則直線的斜率的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設,滿足約束條件,則的最大值為______.14.的展開式中的常數項為______.15.在平行四邊形中,已知,,,若,,則____________.16.將函數的圖像向右平移個單位,得到函數的圖像,則函數在區間上的值域為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,點是直線上的動點,為定點,點為的中點,動點滿足,且,設點的軌跡為曲線.(1)求曲線的方程;(2)過點的直線交曲線于,兩點,為曲線上異于,的任意一點,直線,分別交直線于,兩點.問是否為定值?若是,求的值;若不是,請說明理由.18.(12分)已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關于原點的對稱點為,直線交于點.(1)求橢圓方程;(2)若直線與橢圓交于另一點,且,求點的坐標.19.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.20.(12分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點.(1)證明:平面;(2)求二面角平面角的余弦值.21.(12分)已知,,設函數,.(1)若,求不等式的解集;(2)若函數的最小值為1,證明:.22.(10分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點;(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

作,垂足為,過點N作,垂足為G,設,則,結合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設,由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質及平面幾何的有關知識,屬于中檔題.2.A【解析】

利用數列的遞推關系式,通過累加法求解即可.【詳解】數列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數列的遞推關系式的應用,數列累加法以及通項公式的求法,考查計算能力.3.D【解析】

由函數的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數的圖象關于直線對稱,得,即,解得,所以,,故只需將函數的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D【點睛】本題考查三角函數的圖象與性質,考查圖像變換,考查運算求解能力,是中檔題4.D【解析】

根據的結構形式,設,求導,則,在上是增函數,再根據在中,,得到,,利用余弦函數的單調性,得到,再利用的單調性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數,在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數與函數的單調性,還考查了運算求解的能力,屬于中檔題.5.D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數列得,∴,故選:D.【點睛】本題主要考查等比數列的性質的應用,屬于基礎題.6.A【解析】分析:計算,由z1,是實數得,從而得解.詳解:復數z1=3+4i,z2=a+i,.所以z1,是實數,所以,即.故選A.點睛:本題主要考查了復數共軛的概念,屬于基礎題.7.A【解析】

根據對數的運算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.8.C【解析】

根據拋物線定義,可得,,又,所以,所以,設,則,則,所以,所以直線的斜率.故選C.9.D【解析】

根據條形圖可折線圖所包含的數據對選項逐一分析,由此得出敘述不正確的選項.【詳解】對于A選項,根據折線圖可知深圳的變化幅度最小,根據條形圖可知北京的平均價格最高,所以A選項敘述正確.對于B選項,根據折線圖可知天津的往返機票平均價格變化最大,所以B選項敘述正確.對于C選項,根據條形圖可知上海和廣州的往返機票平均價格基本相當,所以C選項敘述正確.對于D選項,根據折線圖可知相比于上一年同期,除了深圳外,另外五個城市的往返機票平均價格在增加,故D選項敘述錯誤.故選:D【點睛】本小題主要考查根據條形圖和折線圖進行數據分析,屬于基礎題.10.B【解析】

由是偶函數,則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數性質的應用以及根據零點個數確定參數的取值范圍,基礎題.11.D【解析】

依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環.輸出1.選D.12.D【解析】

設直線:,,,由原點在以為直徑的圓的外部,可得,聯立直線與橢圓方程,結合韋達定理,即可求得答案.【詳解】顯然直線不滿足條件,故可設直線:,,,由,得,,解得或,,,,,,解得,直線的斜率的取值范圍為.故選:D.【點睛】本題解題關鍵是掌握橢圓的基礎知識和圓錐曲線與直線交點問題時,通常用直線和圓錐曲線聯立方程組,通過韋達定理建立起目標的關系式,考查了分析能力和計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.29【解析】

由約束條件作出可行域,化目標函數為以原點為圓心的圓,數形結合得到最優解,聯立方程組求得最優解的坐標,代入目標函數得答案.【詳解】由約束條件作出可行域如圖:聯立,解得,目標函數是以原點為圓心,以為半徑的圓,由圖可知,此圓經過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.【點睛】線性規劃問題,首先明確可行域對應的是封閉區域還是開放區域、分界線是實線還是虛線,其次確定目標函數的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結合圖形確定目標函數最值取法、值域范圍.14.160【解析】

先求的展開式中通項,令的指數為3即可求解結論.【詳解】解:因為的展開式的通項公式為:;令,可得;的展開式中的常數項為:.故答案為:160.【點睛】本題考查二項式系數的性質,關鍵是熟記二項展開式的通項,屬于基礎題.15.【解析】

設,則,得到,,利用向量的數量積的運算,即可求解.【詳解】由題意,如圖所示,設,則,又由,,所以為的中點,為的三等分點,則,,所以.【點睛】本題主要考查了向量的共線定理以及向量的數量積的運算,其中解答中熟記向量的線性運算法則,以及向量的共線定理和向量的數量積的運算公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.16.【解析】

根據圖像的平移變換得到函數的解析式,再利用整體思想求函數的值域.【詳解】函數的圖像向右平移個單位得,,,.故答案為:.【點睛】本題考查三角函數圖像的平移變換、值域的求解,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意整體思想的運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)是定值,.【解析】

(1)設出M的坐標為,采用直接法求曲線的方程;(2)設AB的方程為,,,,求出AT方程,聯立直線方程得D點的坐標,同理可得E點的坐標,最后利用向量數量積算即可.【詳解】(1)設動點M的坐標為,由知∥,又在直線上,所以P點坐標為,又,點為的中點,所以,,,由得,即;(2)設直線AB的方程為,代入得,設,,則,,設,則,所以AT的直線方程為即,令,則,所以D點的坐標為,同理E點的坐標為,于是,,所以,從而,所以是定值.【點睛】本題考查了直接法求拋物線的軌跡方程、直線與拋物線位置關系中的定值問題,在處理此類問題一般要涉及根與系數的關系,本題思路簡單,但計算量比較大,是一道有一定難度的題.18.(1);(2)或【解析】

(1)根據的周長為,結合離心率,求出,即可求出方程;(2)設,則,求出直線方程,若斜率不存在,求出坐標,直接驗證是否滿足題意,若斜率存在,求出其方程,與直線方程聯立,求出點坐標,根據和三點共線,將點坐標用表示,坐標代入橢圓方程,即可求解.【詳解】(1)因為橢圓的離心率為,的周長為6,設橢圓的焦距為,則解得,,,所以橢圓方程為.(2)設,則,且,所以的方程為①.若,則的方程為②,由對稱性不妨令點在軸上方,則,,聯立①,②解得即.的方程為,代入橢圓方程得,整理得,或,.,不符合條件.若,則的方程為,即③.聯立①,③可解得所以.因為,設所以,即.又因為位于軸異側,所以.因為三點共線,即應與共線,所以,即,所以,又,所以,解得,所以,所以點的坐標為或.【點睛】本題考查橢圓的標準方程以及應用、直線與橢圓的位置關系,考查分類討論思想和計算求解能力,屬于較難題.19.(1)證明見解析;(2).【解析】

(1)取中點,連接,根據等腰三角形的性質得到,利用全等三角形證得,由此證得平面,進而證得平面平面.(2)由(1)知平面,即是四面體的面上的高,結合錐體體積公式,求得四面體的體積.【詳解】(1)證明:如圖,取中點,連接,由則,則,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面體的面上的高,且.在中,,由勾股定理易知故四面體的體積【點睛】本小題主要考查面面垂直的證明,考查錐體體積計算,考查空間想象能力和邏輯推理能力,屬于中檔題.20.(1)證明見解析(2)【解析】

(1)分別取,的中點,,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點為原點,以為軸,以為軸,以為軸,建立空間直角坐標系,分別計算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計算即可.【詳解】(1)證明:分別取,的中點,,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論