




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知關于x的不等式2x-m>-3的解集如圖所示,則m的取值為()A.2 B.1 C.0 D.-12.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.43.用配方法解一元二次方程x2﹣6x﹣2=0,配方后得到的方程是()A.(x﹣3)2=2 B.(x﹣3)2=8 C.(x﹣3)2=11 D.(x+3)2=94.一元二次方程的根為()A. B. C. D.5.四條線段成比例,其中=3,,,則等于(
)A.2㎝ B.㎝ C. D.8㎝6.正六邊形的周長為12,則它的面積為()A. B. C. D.7.平面直角坐標系內與點P(﹣2,3)關于原點對稱的點的坐標是()A.(3,﹣2) B.(2,3) C.(2,﹣3) D.(﹣3,﹣3)8.如圖,這是一個由四個半徑都為1米的圓設計而成的花壇,圓心在同一直線上,每個圓都會經過相鄰圓的圓心,則這個花壇的周長(實線部分)為()A.4π米 B.π米 C.3π米 D.2π米9.小敏在今年的校運動會跳遠比賽中跳出了滿意一跳,函數(t的單位:s,h的單位:m)可以描述他跳躍時重心高度的變化,則他起跳后到重心最高時所用的時間是()A.1.71s B.1.71s C.1.63s D.1.36s10.某人沿著坡度為1:2.4的斜坡向上前進了130m,那么他的高度上升了()A.50m B.100m C.120m D.130m11.在平面直角坐標系中,將拋物線繞著原點旋轉,所得拋物線的解析式是()A. B.C. D.12.如圖,在正方形ABCD中,E為AB的中點,G,F分別為AD、BC邊上的點,若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.5二、填空題(每題4分,共24分)13.函數和在第一象限內的圖象如圖,點是的圖象上一動點,軸于點,交的圖象于點;軸于點,交的圖象于點,則四邊形的面積為______.14.某游樂園的摩天輪(如圖1)有均勻分布在圓形轉輪邊緣的若干個座艙,人們坐在座艙中可以俯瞰美景,圖2是摩天輪的示意圖.摩天輪以固定的速度繞中心順時針方向轉動,轉一圈為分鐘.從小剛由登艙點進入摩天輪開始計時,到第12分鐘時,他乘坐的座艙到達圖2中的點_________處(填,,或),此點距地面的高度為_______m.15.若,則______.16.某工廠的產品每50件裝為一箱,現質檢部門對100箱產品進行質量檢查,每箱中的次品數見表:次品數012345箱數5014201042該工廠規定:一箱產品的次品數達到或超過6%,則判定該箱為質量不合格的產品箱.若在這100箱中隨機抽取一箱,抽到質量不合格的產品箱概率為_______17.一個不透明的袋子里裝有兩雙只有顏色不同的手套,小明已經摸出一只手套,他再任意摸取一只,恰好兩只手套湊成同一雙的概率為__________.18.某“中學生暑期環保小組”的同學,隨機調查了“金沙綠島”10戶家庭一周內使用環保方便袋的數量,數據如下(單位:只):6,5,7,8,7,5,8,10,5,9,利用上述數據估計該小區500戶家庭一周內需要環保方便袋__________只.三、解答題(共78分)19.(8分)在平面直角坐標系中,已知,.(1)如圖1,求的值.(2)把繞著點順時針旋轉,點、旋轉后對應的點分別為、.①當恰好落在的延長線上時,如圖2,求出點、的坐標.②若點是的中點,點是線段上的動點,如圖3,在旋轉過程中,請直接寫出線段長的取值范圍.20.(8分)超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規定,該種玩具每件利潤不能超過60元),每天可售出50件.根據市場調查發現,銷售單價每增加2元,每天銷售量會減少1件.設銷售單價增加元,每天售出件.(1)請寫出與之間的函數表達式;(2)當為多少時,超市每天銷售這種玩具可獲利潤2250元?(3)設超市每天銷售這種玩具可獲利元,當為多少時最大,最大值是多少?21.(8分)為滿足市場需求,某超市在五月初五“端午節”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規定每盒售價不得少于45元.根據以往銷售經驗發現;當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.(1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;(2)當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?(3)為穩定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?22.(10分)問題發現:(1)如圖1,內接于半徑為4的,若,則_______;問題探究:(2)如圖2,四邊形內接于半徑為6的,若,求四邊形的面積最大值;解決問題(3)如圖3,一塊空地由三條直路(線段、AB、)和一條弧形道路圍成,點是道路上的一個地鐵站口,已知千米,千米,,的半徑為1千米,市政府準備將這塊空地規劃為一個公園,主入口在點處,另外三個入口分別在點、、處,其中點在上,并在公園中修四條慢跑道,即圖中的線段、、、,是否存在一種規劃方案,使得四條慢跑道總長度(即四邊形的周長)最大?若存在,求其最大值;若不存在,說明理由.23.(10分)如圖,拋物線與軸相交于兩點(點在點的左側),與軸相交于點.拋物線上有一點,且.(1)求拋物線的解析式和頂點坐標.(2)當點位于軸下方時,求面積的最大值.(3)①設此拋物線在點與點之間部分(含點和點)最高點與最低點的縱坐標之差為.求關于的函數解析式,并寫出自變量的取值范圍;②當時,點的坐標是___________.24.(10分)如圖,在正方形ABCD中,點E在邊CD上(不與點C,D重合),連接AE,BD交于點F.(1)若點E為CD中點,AB=2,求AF的長.(2)若∠AFB=2,求的值.(3)若點G在線段BF上,且GF=2BG,連接AG,CG,設=x,四邊形AGCE的面積為,ABG的面積為,求的最大值.25.(12分)如圖,在中,,矩形的頂點、分別在邊、上,、在邊上.(1)求證:∽;(2)若,則面積與面積的比為.26.已知二次函數y=﹣x2+2x+m.(1)如果二次函數的圖象與x軸有兩個交點,求m的取值范圍;(2)如圖,二次函數的圖象過點A(-1,0),與y軸交于點C,求直線BC與這個二次函數的解析式;(3)在直線BC上方的拋物線上有一動點D,DEx軸于E點,交BC于F,當DF最大時,求點D的坐標,并寫出DF最大值.
參考答案一、選擇題(每題4分,共48分)1、D【分析】本題是關于x的不等式,應先只把x看成未知數,求得x的解集,再根據數軸上的解集,來求得a的值.【詳解】2x>m?3,解得x>,∵在數軸上的不等式的解集為:x>?2,∴=?2,解得m=?1;故選:D.【點睛】當題中有兩個未知字母時,應把關于某個字母的不等式中的字母當成未知數,求得解集,再根據數軸上的解集進行判斷,求得另一個字母的值.2、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉;2.勾股定理.3、C【分析】根據配方法即可求出答案.【詳解】∵x2﹣6x﹣2=0,∴x2﹣6x=2,∴(x﹣3)2=11,故選:C.【點睛】考查了配方法解方程,配方法的一般步驟:①把常數項移到等號的右邊;②把二次項的系數化為1;③等式兩邊同時加上一次項系數一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數為1,一次項的系數是2的倍數.4、A【解析】提公因式,用因式分解法解方程即可.【詳解】一元二次方程,提公因式得:,∴或,解得:.故選:A.【點睛】本題考查了解一元二次方程-因式分解法,熟練掌握因式分解法是解題的關鍵.5、A【分析】四條線段a,b,c,d成比例,則=,代入即可求得b的值.【詳解】解:∵四條線段a,b,c,d成比例,
∴=,
∴b===2(cm).
故選A.【點睛】本題考查成比例線段,解題關鍵是正確理解四條線段a,b,c,d成比例的定義.6、D【分析】首先根據題意畫出圖形,即可得△OBC是等邊三角形,又由正六邊形ABCDEF的周長為12,即可求得BC的長,繼而求得△OBC的面積,則可求得該六邊形的面積.【詳解】解:如圖,連接OB,OC,過O作OM⊥BC于M,
∴∠BOC=×360°=60°,
∵OB=OC,∴△OBC是等邊三角形,
∵正六邊形ABCDEF的周長為12,
∴BC=12÷6=2,
∴OB=BC=2,∴BM=BC=1,
∴OM==,
∴S△OBC=×BC×OM=×2×=,
∴該六邊形的面積為:×6=6.
故選:D.【點睛】此題考查了圓的內接六邊形的性質與等邊三角形的判定與性質.此題難度不大,注意掌握數形結合思想的應用.7、C【分析】根據關于原點對稱的點,橫坐標與縱坐標都互為相反數即可.【詳解】解:由題意,得
點P(-2,3)關于原點對稱的點的坐標是(2,-3),
故選C.【點睛】本題考查了關于原點對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規律:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;關于原點對稱的點,橫坐標與縱坐標都互為相反數.8、A【分析】根據弧長公式解答即可.【詳解】解:如圖所示:∵這是一個由四個半徑都為1米的圓設計而成的花壇,圓心在同一直線上,每個圓都會經過相鄰圓的圓心,∴OA=OC=O'A=OO'=O'C=1,∴∠AOC=120°,∠AOB=60°,∴這個花壇的周長=,故選:A.【點睛】本題考查了圓的弧長公式,找到弧所對圓心角度數是解題的關鍵9、D【分析】找重心最高點,就是要求這個二次函數的頂點,應該把一般式化成頂點式后,直接解答.【詳解】解:h=3.5t-4.9t2=-4.9(t-)2+,∵-4.9<1∴當t=≈1.36s時,h最大.故選D.【點睛】此題主要考查了二次函數的應用,根據題意得出頂點式在解題中的作用是解題關鍵.10、A【分析】根據坡度的定義可以求得AC、BC的比值,根據AC、BC的比值和AB的長度即可求得AC的值,即可解題.【詳解】解:如圖,根據題意知AB=130米,tanB==1:2.4,設AC=x,則BC=2.4x,則x2+(2.4x)2=1302,解得x=50(負值舍去),即他的高度上升了50m,故選A.【點睛】本題考查了勾股定理在直角三角形中的運用,坡度的定義及直角三角形中三角函數值的計算,屬于基礎題.11、A【解析】試題分析:先將原拋物線化為頂點式,易得出與y軸交點,繞與y軸交點旋轉180°,那么根據中心對稱的性質,可得旋轉后的拋物線的頂點坐標,即可求得解析式.解:由原拋物線解析式可變為:,∴頂點坐標為(-1,2),又由拋物線繞著原點旋轉180°,∴新的拋物線的頂點坐標與原拋物線的頂點坐標關于點原點中心對稱,∴新的拋物線的頂點坐標為(1,-2),∴新的拋物線解析式為:.故選A.考點:二次函數圖象與幾何變換.12、B【解析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【點睛】本題考查了相似三角形的性質的應用,利用勾股定理即可得解,解題的關鍵是證明△AEG∽△BFE.二、填空題(每題4分,共24分)13、3【解析】根據反比例函數系數k的幾何意義可分別求得△OBD、△OAC、矩形PDOC的面積,據此可求出四邊形PAOB的面積.【詳解】解:如圖,
∵A、B是反比函數上的點,
∴S△OBD=S△OAC=,∵P是反比例函數上的點,
∴S矩形PDOC=4,
∴S四邊形PAOB=S矩形PDOC-S△ODB--S△OAC=4--=3,故答案是:3.【點睛】本題考查的是反比例函數綜合題,熟知反比例函數中系數k的幾何意義是解答此題的關鍵.14、C78【分析】根據轉一圈需要18分鐘,到第12分鐘時轉了圈,即可確定出座艙到達了哪個位置;再利用垂徑定理和特殊角的銳角三角函數求點離地面的高度即可.【詳解】∵轉一圈需要18分鐘,到第12分鐘時轉了圈∴乘坐的座艙到達圖2中的點C處如圖,連接BC,OC,OB,作OQ⊥BC于點E由圖2可知圓的半徑為44m,即∵OQ⊥BC∴∴∴∴點C距地面的高度為m故答案為C,78【點睛】本題主要考查解直角三角形,掌握垂徑定理及特殊角的銳角三角函數是解題的關鍵.15、【分析】利用“設法”表示出,然后代入等式,計算即可.【詳解】設,則:,∴,故答案為:.【點睛】本題考查了比例的性質,利用“設法”表示出是解題的關鍵.16、【分析】由表格中的數據可知算出抽到質量不合格的產品箱頻率后,利用頻率估計概率即可求得答案.【詳解】解:∵一箱產品的次品數達到或超過6%,則判定該箱為質量不合格的產品箱.∴質量不合格的產品應滿足次品數量達到:∴抽到質量不合格的產品箱頻率為:所以100箱中隨機抽取一箱,抽到質量不合格的產品箱概率:故答案為:.【點睛】本題考查了利用頻率估計概率,大量重復實驗時,事件發生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,由此可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率的近似值,隨著實驗次數的增多,值越來越精確.17、【分析】設一雙為紅色,另一雙為綠色,畫樹狀圖得出總結果數和恰好兩只手套湊成同一雙的結果數,利用概率公式即可得答案.【詳解】畫樹狀圖如下:∵共有6種可能情況,恰好兩只手套湊成同一雙的情況有2種,∴恰好兩只手套湊成同一雙的概率為,故答案為:【點睛】本題考查用列表法或樹狀圖法求概率,熟練掌握概率公式是解題關鍵.18、3500【分析】先求出10戶家庭一周內使用環保方便袋的數量總和,然后求得樣本平均數,最后乘以總數500即可解答.【詳解】由10戶家庭一周內使用環保方便袋的數量可知平均每戶一周使用的環保方便袋的數量為則該小區500戶家庭一周內需要環保方便袋約為,故答案為3500.【點睛】本題考查的是樣本平均數的求法與意義,能夠知道平均數的計算方法是解題的關鍵.三、解答題(共78分)19、(1);(2)①,②;(3)【解析】(1)作AH⊥OB,根據正弦的定義即可求解;(2)作MC⊥OB,先求出直線AB解析式,根據等腰三角形的性質及三角函數的定義求出M點坐標,根據MN∥OB,求出N點坐標;(3)由于點C是定點,點P隨△ABO旋轉時的運動軌跡是以B為圓心,BP長為半徑的圓,故根據點和圓的位置關系可知,當點P在線段OB上時,CP=BP-BC最短;當點P在線段OB延長線上時,CP=BP+BC最長.又因為BP的長因點D運動而改變,可先求BP長度的范圍.由垂線段最短可知,當BP垂直MN時,BP最短,求得的BP代入CP=BP-BC求CP的最小值;由于BM>BN,所以點P與M重合時,BP=BM最長,代入CP=BP+BC求CP的最大值.【詳解】(1)作AH⊥OB,∵,.∴H(3,5)∴AH=3,AH=∴==(2)由(1)得A(3,4),又求得直線AB的解析式為:y=∵旋轉,∴MB=OB=6,作MC⊥OB,∵AO=BO,∴∠AOB=∠ABO∴MC=MBsin∠ABO=6×=即M點的縱坐標為,代入直線AB得x=∴,∵∠NMB=∠AOB=∠ABO∴MN∥OB,又MN=AB=5,則+5=∴(3)連接BP∵點D為線段OA上的動點,OA的對應邊為MN∴點P為線段MN上的動點∴點P的運動軌跡是以B為圓心,BP長為半徑的圓∵C在OB上,且CB=OB=3∴當點P在線段OB上時,CP=BP?BC最短;當點P在線段OB延長線上時,CP=BP+BC最長如圖3,當BP⊥MN時,BP最短∵S△NBM=S△ABO,MN=OA=5∴MN?BP=OB?yA∴BP===∴CP最小值=?3=當點P與M重合時,BP最大,BP=BM=OB=6∴CP最大值=6+3=9∴線段CP長的取值范圍為.【點睛】此題主要考查一次函數與幾何綜合,解題的關鍵是熟知待定系數法的運用、旋轉的性質、三角函數的應用.20、(1)(2)當為10時,超市每天銷售這種玩具可獲利潤2250元(3)當為20時最大,最大值是2400元【分析】(1)根據題意列函數關系式即可;(2)根據題意列方程即可得到結論;(3)根據題意得到,根據二次函數的性質得到當時,隨的增大而增大,于是得到結論.【詳解】(1)根據題意得,;(2)根據題意得,,解得:,,∵每件利潤不能超過60元,∴,答:當為10時,超市每天銷售這種玩具可獲利潤2250元;(3)根據題意得,,∵,∴當時,隨的增大而增大,∴當時,,答:當為20時最大,最大值是2400元.【點睛】本題考查了一次函數、二次函數的應用,弄清題目中包含的數量關系是解題關鍵.21、(1)y=﹣20x+1600;(2)當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)超市每天至少銷售粽子440盒.【解析】試題分析:(1)根據“當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒”即可得出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;(2)根據利潤=1盒粽子所獲得的利潤×銷售量列式整理,再根據二次函數的最值問題解答;(3)先由(2)中所求得的P與x的函數關系式,根據這種粽子的每盒售價不得高于58元,且每天銷售粽子的利潤不低于6000元,求出x的取值范圍,再根據(1)中所求得的銷售量y(盒)與每盒售價x(元)之間的函數關系式即可求解.試題解析:(1)由題意得,==;(2)P===,∵x≥45,a=﹣20<0,∴當x=60時,P最大值=8000元,即當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)由題意,得=6000,解得,,∵拋物線P=的開口向下,∴當50≤x≤70時,每天銷售粽子的利潤不低于6000元的利潤,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y隨x的增大而減小,∴當x=58時,y最小值=﹣20×58+1600=440,即超市每天至少銷售粽子440盒.考點:二次函數的應用.22、(1);(2)四邊形ABCD的面積最大值是;(3)存在,其最大值為.【分析】(1)連接OA、OB,作OH⊥AB于H,利用求出∠AOH=∠AOB=,根據OA=4,利用余弦公式求出AH,即可得到AB的長;(2)連接AC,由得出AC=,再根據四邊形的面積=,當DH+BM最大時,四邊形ABCD的面積最大,得到BD是直徑,再將AC、BD的值代入求出四邊形面積的最大值即可;(3)先證明△ADM≌△BMC,得到△CDM是等邊三角形,求得等邊三角形的邊長CD,再根據完全平方公式的關系得出PD=PC時PD+PC最大,根據CD、∠DPC求出PD,即可得到四邊形周長的最大值.【詳解】(1)連接OA、OB,作OH⊥AB于H,∵,∴∠AOB=120.∵OH⊥AB,∴∠AOH=∠AOB=,AH=BH=AB,∵OA=4,∴AH=,∴AB=2AH=.故答案為:.(2)∵∠ABC=120,四邊形ABCD內接于,∴∠ADC=60,∵的半徑為6,∴由(1)得AC=,如圖,連接AC,作DH⊥AC,BM⊥AC,∴四邊形的面積=,當DH+BM最大時,四邊形ABCD的面積最大,連接BD,則BD是的直徑,∴BD=2OA=12,BD⊥AC,∴四邊形的面積=.∴四邊形ABCD的面積最大值是(3)存在;∵千米,千米,,∴△ADM≌△BMC,∴DM=MC,∠AMD=∠BCM,∵∠BCM+∠BMC=180-∠B=120,∴∠AMD+∠BMC=120,∴∠DMC=60,∴△CDM是等邊三角形,∴C、D、M三點共圓,∵點P在弧CD上,∴C、D、M、P四點共圓,∴∠DPC=180-∠DMC=120,∵弧的半徑為1千米,∠DMC=60,∴CD=,∵,∴,∴,∴當PD=PC時,PD+PC最大,此時點P在弧CD的中點,交DC于H,在Rt△DPH中,∠DHP=90,∠DPH=60,DH=DC=,∴,∴四邊形的周長最大值=DM+CM+DP+CP=.【點睛】此題是一道綜合題,考查圓的性質,垂徑定理,三角函數,三角形全等的判定及性質,動點最大值等知識點.(1)中問題發現的結論應用很主要,理解題意在(2)、(3)中應用解題,(3)的PD+PC最大值的確定是難點,注意與所學知識的結合才能更好的解題.23、(1),頂點坐標為;(2)8;(3)①;②.【分析】(1)將點C代入表達式即可求出解析式,將表達式轉換為頂點式即可寫出頂點坐標;(2)根據題目分析可知,當點P位于拋物線頂點時,△ABP面積最大,根據解析式求出A、B坐標,從而得到AB長,再利用三角形面積公式計算面積即可;(3)①分三種情況:0<m≤1、1<m≤2以及m>2時,分別進行計算即可;②將h=9代入①中的表達式分別計算判斷即可.【詳解】解:(1)將點代入,得,解得,∴,∵,∴拋物線的頂點坐標為;(2)令,解得或,∴,,∴,當點與拋物線頂點重合時,△ABP的面積最大,此時;(3)①∵點C(0,-3)關于對稱軸x=1對稱的點的坐標為(2,-3),P(m,),∴當時,,當時,,當時,,綜上所述,;②當h=9時,若,此時方程無解,若,解得m=4或m=-2(不合題意,舍去),∴P(4,5).【點睛】本題為二次函數綜合題,需熟練掌握二次函數表達式求法及二次函數的性質,對于動點問題正確分析出所存在的所有情況是解題關鍵.24、(1);(2);(3).【分析】(1)由可得DE的長,利用勾股定理可得AE的長,又易證,由相似三角形的性質可得,求解即可得;(2)如圖(見解析),連接AC與BD交于點O,由正方形的性質可知,,,設,在中,可求出,從而可得DF和BF的長,即可得出答案;(3)設正方形的邊長,可得DE、AO、BO、BD的長,由可得BF的長,又根據可得BG的長,從而可得的面積,用正方形的面積減去三個三角形的面積可得四邊形AGCE的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同范本財務人員聘用合同示例
- 保運業務知識復習測試卷
- 赤鐵礦選廠及配套工程可行性研究報告
- 初中智能測評題目及答案
- 傳媒機構面試題庫及答案
- 2025電影制作合同樣本與后期協議
- 初中游泳考試試題及答案
- 2025建筑工程施工合同范本協議
- 浙江安全員c證考試試題及答案
- 初中數學考試試題及答案
- 2022年寧夏寧東開發投資有限公司招聘筆試試題及答案解析
- ??尚滥[瘤課件
- 【國標圖集】13J404電梯自動扶梯自動人行道
- 居民死亡醫學證明書英文翻譯模板
- 2009-2022歷年四川省鄉鎮定向公務員考試《行測》真題含答案2022-2023上岸必備匯編5
- 標識和可追溯性過程分析烏龜圖
- 特種工作作業人員體格檢查表
- 小學道德與法治人教五年級上冊第四單元驕人祖先燦爛文化-《意蘊雋永的漢字》教學設計
- 關于贛州市登革熱病例疫情的初步調查報告
- 網絡輿論監督存在的問題及對策分析研究行政管理專業
- 普佑克四期臨床方案
評論
0/150
提交評論