2022年湖南省懷化市會同第一中學九年級數學第一學期期末監測模擬試題含解析_第1頁
2022年湖南省懷化市會同第一中學九年級數學第一學期期末監測模擬試題含解析_第2頁
2022年湖南省懷化市會同第一中學九年級數學第一學期期末監測模擬試題含解析_第3頁
2022年湖南省懷化市會同第一中學九年級數學第一學期期末監測模擬試題含解析_第4頁
2022年湖南省懷化市會同第一中學九年級數學第一學期期末監測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.若關于x的一元二次方程有實數根,則k的取值范圍是()A. B. C.且 D.且2.用配方法解方程配方正確的是()A. B. C. D.3.對于二次函數y=﹣2x2,下列結論正確的是()A.y隨x的增大而增大 B.圖象關于直線x=0對稱C.圖象開口向上 D.無論x取何值,y的值總是負數4.如圖,點P在△ABC的邊AC上,下列條件中不能判斷△ABP∽△ACB的是()A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP?AC D.CB2=CP?CA5.如圖,正比例函數y=x與反比例函數y=的圖象相交于A,C兩點.AB⊥x軸于B,CD⊥x軸于D,當四邊形ABCD的面積為6時,則k的值是()A.6 B.3 C.2 D.6.一元二次方程的解是()A. B. C., D.,7.已知,則()A.1 B.2 C.4 D.88.方程的兩根之和是()A. B. C. D.9.如右圖要測量小河兩岸相對的兩點、的距離,可以在小河邊取的垂線上的一點,測得米,,則小河寬為()A.米 B.米 C.米 D.米10.關于x的一元二次方程x2﹣x+sinα=0有兩個相等的實數根,則銳角α等于()A.15° B.30° C.45° D.60°11.下列各組圖形中,一定相似的是()A.任意兩個圓B.任意兩個等腰三角形C.任意兩個菱形D.任意兩個矩形12.下列關于反比例函數,結論正確的是()A.圖象必經過B.圖象在二,四象限內C.在每個象限內,隨的增大而減小D.當時,則二、填空題(每題4分,共24分)13.如圖,一個長為4,寬為3的長方形木板斜靠在水平桌面上的一個小方塊上,其長邊與水平桌面成30°夾角,將長方形木板按逆時針方向做兩次無滑動的翻滾,使其長邊恰好落在水平桌面l上,則木板上點A滾動所經過的路徑長為_____.14.如圖,將矩形ABCD繞點A旋轉至矩形AB′C′D′位置,此時AC′的中點恰好與D點重合,AB′交CD于點E.若AB=6,則△AEC的面積為_____.15.一元二次方程的根是_____.16.如圖,直線與雙曲線交于點,點是直線上一動點,且點在第二象限.連接并延長交雙曲線與點.過點作軸,垂足為點.過點作軸,垂足為,若點的坐標為,點的坐標為,設的面積為的面積為,當時,點的橫坐標的取值范圍為_________.17.若,則=___________.18.已知一元二次方程有一個根為0,則a的值為_______.三、解答題(共78分)19.(8分)我市某中學藝術節期間,向全校學生征集書畫作品.九年級美術王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數量進行了分析統計,制作了如下兩幅不完整的統計圖.(1)王老師采取的調查方式是(填“普查”或“抽樣調查”),王老師所調查的4個班征集到作品共件,其中b班征集到作品件,請把圖2補充完整;(2)王老師所調查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?(3)如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現在要在其中抽兩人去參加學校總結表彰座談會,請直接寫出恰好抽中一男一女的概率.20.(8分)如圖,在ABC中,點D,E分別在邊AC,AB上,且AE·AB=AD·AC,連接DE,BD.(1)求證:ADE~ABC.(2)若點E為AB為中點,AD:AE=6:5,ABC的面積為50,求BCD面積.21.(8分)甲、乙、丙三人進行乒乓球比賽.他們通過摸球的方式決定首場比賽的兩個選手:在一個不透明的口袋中放入兩個紅球和一個白球,這些球除顏色外其他都相同,將它們攪勻,三人從中各摸出一個球,摸到紅球的兩人即為首場比賽選手.求甲、丙兩人成為比賽選手的概率.(請用畫樹狀圖或列表等方法寫出分析過程并給出結果.)22.(10分)圖1是某小區入口實景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬3.9米,門衛室外墻AB上的O點處裝有一盞路燈,點O與地面BC的距離為3.3米,燈臂OM長為1.2米(燈罩長度忽略不計),∠AOM=60°.(1)求點M到地面的距離;(2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進入時,貨車需與護欄CD保持0.65米的安全距離,此時,貨車能否安全通過?若能,請通過計算說明;若不能,請說明理由.(參考數據:1.73,結果精確到0.01米)23.(10分)如圖,坡AB的坡比為1:2.4,坡長AB=130米,坡AB的高為BT.在坡AB的正面有一棟建筑物CH,點H、A、T在同一條地平線MN上.(1)試問坡AB的高BT為多少米?(2)若某人在坡AB的坡腳A處和中點D處,觀測到建筑物頂部C處的仰角分別為60°和30°,試求建筑物的高度CH.(精確到米,≈1.73,≈1.41)24.(10分)(1)計算:;(2)解方程:.25.(12分)如圖,四邊形ABCD為矩形.(1)如圖1,E為CD上一定點,在AD上找一點F,使得矩形沿著EF折疊后,點D落在BC邊上(尺規作圖,保留作圖痕跡);(2)如圖2,在AD和CD邊上分別找點M,N,使得矩形沿著MN折疊后BC的對應邊B'C'恰好經過點D,且滿足B'C'⊥BD(尺規作圖,保留作圖痕跡);(3)在(2)的條件下,若AB=2,BC=4,則CN=.26.某校3男2女共5名學生參加黃石市教育局舉辦的“我愛黃石”演講比賽.(1)若從5名學生中任意抽取3名,共有多少種不同的抽法,列出所有可能情形;(2)若抽取的3名學生中,某男生抽中,且必有1女生的概率是多少?

參考答案一、選擇題(每題4分,共48分)1、C【分析】一元二次方程有實數根,則根的判別式≥1,且k≠1,據此列不等式求解.【詳解】根據題意,得:=1-16≥1且≠1,解得:且≠1.故選:C.【點睛】本題考查一元二次方程根的判別式與實數根的情況,注意≠1.2、A【分析】本題可以用配方法解一元二次方程,首先將常數項移到等號的右側,將等號左右兩邊同時加上一次項系數一半的平方,即可將等號左邊的代數式寫成完全平方形式.【詳解】解:,,∴,.故選:.【點睛】此題考查配方法的一般步驟:①把常數項移到等號的右邊;②把二次項的系數化為1;③等式兩邊同時加上一次項系數一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數為1,一次項的系數是2的倍數.3、B【分析】根據二次函數的性質可判斷A、B、C,代入x=0,可判斷D.【詳解】解:∵a=﹣2<0,b=0,∴二次函數圖象開口向下;對稱軸為x=0;當x<0時,y隨x增大而增大,當x>0時,y隨x增大而減小,故A,C錯誤,B正確,當x=0時,y=0,故D錯誤,故選:B.【點睛】本題考查了二次函數的圖象和性質,熟練掌握基礎知識是解題關鍵.4、D【分析】觀察圖形可得,與已經有一組角∠重合,根據三角形相似的判定定理,可以再找另一組對應角相等,或者∠的兩條邊對應成比例.注意答案中的、兩項需要按照比例的基本性質轉化為比例式再確定.【詳解】解:項,∠=∠,可以判定;項,∠=∠,可以判定;項,,,可以判定;項,,,不能判定.【點睛】本題主要考查了相似三角形的判定定理,結合圖形,按照定理找到條件是解答關鍵.5、B【分析】根據反比例函數的對稱性可知:OB=OD,AB=CD,再由反比例函數y=中k的幾何意義,即可得到結論.【詳解】解:∵正比例函數y=x與反比例函數y=的圖象相交于A,C兩點,AB⊥x軸于B,CD⊥x軸于D,∴AB=OB=OD=CD,∴四邊形ABCD是平行四邊形,∴k=2S△AOB=2×=3,故選:B.【點睛】本題考查反比例函數與正比例函數的結合題型,關鍵在于熟悉反比例函數k值的幾何意義.6、C【解析】用因式分解法解一元二次方程即可.【詳解】∴或∴,故選C.【點睛】本題主要考查一元二次方程的解,掌握解一元二次方程的方法是解題的關鍵.7、C【分析】根據比例的性質得出再代入要求的式子,然后進行解答即可.【詳解】解:∵,∴a=4b,c=4d,∴,故選C.【點睛】此題考查了比例的性質,熟練掌握比例線段的性質是解題的關鍵,是一道基礎題.8、C【分析】利用兩個根和的關系式解答即可.【詳解】兩個根的和=,故選:C.【點睛】此題考查一元二次方程根與系數的關系式,.9、A【分析】根據銳角三角函數的定義即可得出結論.【詳解】解:在Rt△ACP中,tan∠ACP=∴米故選A.【點睛】此題考查是解直角三角形,掌握銳角三角函數的定義是解決此題的關鍵.10、B【解析】解:∵關于x的一元二次方程有兩個相等的實數根,∴△=,解得:sinα=,∵α為銳角,∴α=30°.故選B.11、A【分析】根據相似圖形的性質,對各選項分析判斷即可得出答案.【詳解】A、任意兩個圓,一個圓放大或縮小后能夠與另外一個圓重合,所以任意兩個圓一定是相似圖形,故選A.B、任意兩個等腰三角形,對應邊不一定成比例,對應角不一定相等,所以不一定相似,故本選項錯誤.C、任意兩個菱形,對應邊成比例,但對應角不一定相等,所以不一定相似,故本選項錯誤.D、任意兩個矩形,對應邊不一定成比例,對應角都是直角,一定相等,所以也不一定相似,故本選項錯誤.故選A.【點睛】本題考查了相似圖形的概念,靈活運用相似圖形的性質是解題的關鍵.12、B【分析】根據反比例函數的圖象和性質,逐一判斷選項,即可得到答案.【詳解】∵,∴A錯誤,∵k=-8<0,即:函數的圖象在二,四象限內,∴B正確,∵k=-8<0,即:在每個象限內,隨的增大而增大,∴C錯誤,∵當時,則或,∴D錯誤,故選B.【點睛】本題主要考查反比例函數的圖象和性質,掌握比例系數k的意義與增減性,是解題的關鍵.二、填空題(每題4分,共24分)13、π【分析】木板轉動兩次的軌跡如圖(見解析):第一次轉動是以點M為圓心,AM為半徑,圓心角為60度;第二次轉動是以點N為圓心,為半徑,圓心角為90度,根據弧長公式即可求得.【詳解】由題意,木板轉動兩次的軌跡如圖:(1)第一次轉動是以點M為圓心,AM為半徑,圓心角為60度,即所以弧的長(2)第二次轉動是以點N為圓心,為半徑,圓心角為90度,即所以弧的長(其中半徑)所以總長為故答案為.【點睛】本題考查了圖形的翻轉、弧長公式(弧長,其中是圓心角弧度數,為半徑),理解圖形翻轉的軌跡是解題關鍵.14、4【分析】根據旋轉后AC的中點恰好與D點重合,利用旋轉的性質得到直角三角形ACD中,∠ACD=30°,再由旋轉后矩形與已知矩形全等及矩形的性質得到∠DAE為30°,進而得到∠EAC=∠ECA,利用等角對等邊得到AE=CE,設AE=CE=x,表示出AD與DE,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出EC的長,即可求出三角形AEC面積.【詳解】解:∵旋轉后AC的中點恰好與D點重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,設AE=EC=x,則有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根據勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,則S△AEC=EC?AD=4.故答案為4.【點睛】本題考查了旋轉的性質,含30度直角三角形的性質,勾股定理以及等腰三角形的性質的運用,熟練掌握性質及定理是解答本題的關鍵.15、【分析】利用因式分解法把方程化為x-3=0或x-2=0,然后解兩個一次方程即可.【詳解】解:或,所以.故答案為.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.16、-3<x<-1【分析】根據點A的坐標求出中k,再根據點B在此圖象上求出點B的橫坐標m,根據結合圖象即可得到答案.【詳解】∵A(-1,3)在上,∴k=-3,∵B(m,1)在上,∴m=-3,由圖象可知:當時,點P在線段AB上,∴點P的橫坐標x的取值范圍是-3<x<-1,故答案為:-3<x<-1.【點睛】此題考查一次函數與反比例函數交點問題,反比例函數解析式的求法,正確理解題意是解題的關鍵.17、【分析】根據題干信息,利用已知得出a=b,進而代入代數式求出答案即可.【詳解】解:∵,∴a=b,∴=.故答案為:.【點睛】本題主要考查比例的性質,正確得出a=b,并利用代入代數式求值是解題關鍵.18、-1【解析】將x=0代入原方程可得關于a的方程,解之可求得a的值,結合一元二次方程的定義即可確定出a的值.【詳解】把x=0代入一元二次方程(a-1)x2+7ax+a2+3a-1=0,可得a2+3a-1=0,解得a=-1或a=1,∵二次項系數a-1≠0,∴a≠1,∴a=-1,故答案為-1.【點睛】本題考查了一元二次方程的一般式以及一元二次方程的解,熟知一元二次方程二次項系數不為0是解本題的關鍵.三、解答題(共78分)19、(1)抽樣調查;12;3;(2)60;(3).【解析】試題分析:(1)根據只抽取了4個班可知是抽樣調查,根據C在扇形圖中的角度求出所占的份數,再根據C的人數是5,列式進行計算即可求出作品的件數,然后減去A、C、D的件數即為B的件數;(2)求出平均每一個班的作品件數,然后乘以班級數14,計算即可得解;(3)畫出樹狀圖或列出圖表,再根據概率公式列式進行計算即可得解.試題解析:(1)抽樣調查,所調查的4個班征集到作品數為:5÷=12件,B作品的件數為:12﹣2﹣5﹣2=3件,故答案為抽樣調查;12;3;把圖2補充完整如下:(2)王老師所調查的四個班平均每個班征集作品=12÷4=3(件),所以,估計全年級征集到參展作品:3×14=42(件);(3)畫樹狀圖如下:列表如下:共有20種機會均等的結果,其中一男一女占12種,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考點:1.條形統計圖;2.用樣本估計總體;3.扇形統計圖;4.列表法與樹狀圖法;5.圖表型.20、(1)詳見解析;(2)14【分析】(1)根據可得,又因,由相似三角形的判定定理即可證;(2)設,根據得,由點E是AB的中點得,可求出的值,根據相似三角形的面積比等于對應邊的比的平方可得的面積,因等底等高得,的面積等于的面積,從而可得答案.【詳解】(1)在和中,(兩邊對應成比例且夾角相等的三角形相似)(2)設又點E是AB的中點由題(1)知又又和的邊,且邊上對應的高是同一條高答:的面積為14.【點睛】本題考查了相似三角形的判定定理和性質,熟記判定定理和性質是解題關鍵.21、.【解析】先畫樹狀圖得到所有等可能的情況,然后找出符合條件的情況數,利用概率公式求解即可.【詳解】畫樹狀圖為:由樹狀圖知,共有6種等可能的結果數,其中甲、丙兩人成為比賽選手的結果有2種,所以甲、丙兩人成為比賽選手的概率為=.【點睛】本題考查了列表法或樹狀圖法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數與總情況數之比.22、(1)3.9米;(2)貨車能安全通過.【解析】(1)過M作MN⊥AB于N,交BA的延長線于N,在Rt△OMN中,求出ON的長,即可求得BN的長,即可求得點M到地面的距離;(2)左邊根據要求留0.65米的安全距離,即取CE=0.65,車寬EH=2.55,計算高GH的長即可,與3.5作比較,可得結論.【詳解】(1)如圖,過M作MN⊥AB于N,交BA的延長線于N,在Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ONOM=0.6,∴NB=ON+OB=3.3+0.6=3.9,即點M到地面的距離是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,過H作GH⊥BC,交OM于G,過O作OP⊥GH于P,∵∠GOP=30°,∴tan30°,∴GPOP0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴貨車能安全通過.【點睛】本題考查了解直角三角形的應用、銳角三角函數等知識,正確添加輔助線,構建直角三角形是解題的關鍵.23、(1)坡AB的高BT為50米;(2)建筑物高度為89米【解析】試題分析:(1)根據坡AB的坡比為1:2.4,可得tan∠BAT=,可設TB=h,則AT=2.4h,由勾股定理可得,即可求解,(2)作DK⊥MN于K,作DL⊥CH于L,在△ADK中,AD=AB=65,KD=BT=25,得AK=60,在△DCL中,∠CDL=30°,令CL=x,得LD=,易知四邊形DLHK是矩形,則LH=DK,LD=HK,在△ACH中,∠CAH=60°,CH=x+25,得AH=,所以,解得,則CH=.試題解析:(1)在△ABT中,∠ATB=90°,BT:AT=1:2.4,AB=130,令TB=h,則AT=2.4h,有,解得h=50(舍負).答:坡AB的高BT為50米.(2)作DK⊥MN于K,作DL⊥CH于L,在△ADK中,AD=AB=65,KD=BT=25,得AK=60,在△DCL中,∠CDL=30°,令CL=x,得LD=,易知四邊形DLHK是矩形,則LH=DK,LD=HK,在△ACH中,∠CAH=60°,CH=x+25,得AH=,所以,解得,則CH=.答:建筑物高度為89米.24、(1);(2),【分析】(1)利用特殊角的三角函數值計算即可;(2)利用因式分解法解一元二次方程即可.【詳解】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論