2023學年黑龍江省青岡縣一中高三一診考試數學試卷(含解析)_第1頁
2023學年黑龍江省青岡縣一中高三一診考試數學試卷(含解析)_第2頁
2023學年黑龍江省青岡縣一中高三一診考試數學試卷(含解析)_第3頁
免費預覽已結束,剩余19頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023學年高考數學模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的值域為,函數,則的圖象的對稱中心為()A. B.C. D.2.已知函數,關于x的方程f(x)=a存在四個不同實數根,則實數a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)3.為實現國民經濟新“三步走”的發展戰略目標,國家加大了扶貧攻堅的力度.某地區在2015年以前的年均脫貧率(脫離貧困的戶數占當年貧困戶總數的比)為.2015年開始,全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數占比(參加該項目戶數占2019年貧困戶總數的比)及該項目的脫貧率見下表:實施項目種植業養殖業工廠就業服務業參加用戶比脫貧率那么年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍4.已知函數,.若存在,使得成立,則的最大值為()A. B.C. D.5.已知復數,(為虛數單位),若為純虛數,則()A. B.2 C. D.6.已知函數,給出下列四個結論:①函數的值域是;②函數為奇函數;③函數在區間單調遞減;④若對任意,都有成立,則的最小值為;其中正確結論的個數是()A. B. C. D.7.設,若函數在區間上有三個零點,則實數的取值范圍是()A. B. C. D.8.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.9.如果,那么下列不等式成立的是()A. B.C. D.10.已知向量,且,則等于()A.4 B.3 C.2 D.111.的展開式中的系數是-10,則實數()A.2 B.1 C.-1 D.-212.已知數列的通項公式為,將這個數列中的項擺放成如圖所示的數陣.記為數陣從左至右的列,從上到下的行共個數的和,則數列的前2020項和為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數的值域為_________.14.某次足球比賽中,,,,四支球隊進入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.15.雙曲線的左右頂點為,以為直徑作圓,為雙曲線右支上不同于頂點的任一點,連接交圓于點,設直線的斜率分別為,若,則_____.16.過點,且圓心在直線上的圓的半徑為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數的取值范圍.18.(12分)等差數列的公差為2,分別等于等比數列的第2項,第3項,第4項.(1)求數列和的通項公式;(2)若數列滿足,求數列的前2020項的和.19.(12分)如圖,在直三棱柱中,,點分別為和的中點.(Ⅰ)棱上是否存在點使得平面平面?若存在,寫出的長并證明你的結論;若不存在,請說明理由.(Ⅱ)求二面角的余弦值.20.(12分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點.求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.21.(12分)已知函數(1)解不等式;(2)若函數,若對于任意的,都存在,使得成立,求實數的取值范圍.22.(10分)如圖,三棱柱中,與均為等腰直角三角形,,側面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】

由值域為確定的值,得,利用對稱中心列方程求解即可【題目詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【答案點睛】本題考查三角函數的圖像及性質,考查函數的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為02、D【答案解析】

原問題轉化為有四個不同的實根,換元處理令t,對g(t)進行零點個數討論.【題目詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調遞增,在(2,+∞)上單調遞減.由,可得,即a<2.∴實數a的取值范圍是(2,2).故選:D.【答案點睛】此題考查方程的根與函數零點問題,關鍵在于等價轉化,將問題轉化為通過導函數討論函數單調性解決問題.3、B【答案解析】

設貧困戶總數為,利用表中數據可得脫貧率,進而可求解.【題目詳解】設貧困戶總數為,脫貧率,所以.故年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的倍.故選:B【答案點睛】本題考查了概率與統計,考查了學生的數據處理能力,屬于基礎題.4、C【答案解析】

由題意可知,,由可得出,,利用導數可得出函數在區間上單調遞增,函數在區間上單調遞增,進而可得出,由此可得出,可得出,構造函數,利用導數求出函數在上的最大值即可得解.【題目詳解】,,由于,則,同理可知,,函數的定義域為,對恒成立,所以,函數在區間上單調遞增,同理可知,函數在區間上單調遞增,,則,,則,構造函數,其中,則.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,.故選:C.【答案點睛】本題考查代數式最值的計算,涉及指對同構思想的應用,考查化歸與轉化思想的應用,有一定的難度.5、C【答案解析】

把代入,利用復數代數形式的除法運算化簡,由實部為0且虛部不為0求解即可.【題目詳解】∵,∴,∵為純虛數,∴,解得.故選C.【答案點睛】本題考查復數代數形式的除法運算,考查復數的基本概念,是基礎題.6、C【答案解析】

化的解析式為可判斷①,求出的解析式可判斷②,由得,結合正弦函數得圖象即可判斷③,由得可判斷④.【題目詳解】由題意,,所以,故①正確;為偶函數,故②錯誤;當時,,單調遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【答案點睛】本題考查三角函數的綜合運用,涉及到函數的值域、函數單調性、函數奇偶性及函數最值等內容,是一道較為綜合的問題.7、D【答案解析】令,可得.在坐標系內畫出函數的圖象(如圖所示).當時,.由得.設過原點的直線與函數的圖象切于點,則有,解得.所以當直線與函數的圖象切時.又當直線經過點時,有,解得.結合圖象可得當直線與函數的圖象有3個交點時,實數的取值范圍是.即函數在區間上有三個零點時,實數的取值范圍是.選D.點睛:已知函數零點的個數(方程根的個數)求參數值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解,對于一些比較復雜的函數的零點問題常用此方法求解.8、B【答案解析】

根據拋物線方程求得焦點坐標和準線方程,結合定義表示出;根據拋物線與圓的位置關系和特點,求得點橫坐標的取值范圍,即可由的周長求得其范圍.【題目詳解】拋物線,則焦點,準線方程為,根據拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【答案點睛】本題考查了拋物線定義、方程及幾何性質的簡單應用,圓的幾何性質應用,屬于中檔題.9、D【答案解析】

利用函數的單調性、不等式的基本性質即可得出.【題目詳解】∵,∴,,,.故選:D.【答案點睛】本小題主要考查利用函數的單調性比較大小,考查不等式的性質,屬于基礎題.10、D【答案解析】

由已知結合向量垂直的坐標表示即可求解.【題目詳解】因為,且,,則.故選:.【答案點睛】本題主要考查了向量垂直的坐標表示,意在考查學生對這些知識的理解掌握水平,屬于基礎題.11、C【答案解析】

利用通項公式找到的系數,令其等于-10即可.【題目詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【答案點睛】本題考查求二項展開式中特定項的系數,考查學生的運算求解能力,是一道容易題.12、D【答案解析】

由題意,設每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【題目詳解】由題意,設每一行的和為故因此:故故選:D【答案點睛】本題考查了等差數列型數陣的求和,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】

利用換元法,得到,利用導數求得函數的單調性和最值,即可得到函數的值域,得到答案.【題目詳解】由題意,可得,令,,即,則,當時,,當時,,即在為增函數,在為減函數,又,,,故函數的值域為:.【答案點睛】本題主要考查了三角函數的最值,以及利用導數研究函數的單調性與最值,其中解答中合理利用換元法得到函數,再利用導數求解函數的單調性與最值是解答的關鍵,著重考查了推理與預算能力,屬于基礎題.14、0.18【答案解析】

根據表中信息,可得勝C的概率;分類討論B或D進入決賽,再計算A勝B或A勝C的概率即可求解.【題目詳解】由表中信息可知,勝C的概率為;若B進入決賽,B勝D的概率為,則A勝B的概率為;若D進入決賽,D勝B的概率為,則A勝D的概率為;由相應的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【答案點睛】本題考查了獨立事件的概率應用,互斥事件的概率求法,屬于基礎題.15、【答案解析】

根據雙曲線上的點的坐標關系得,交圓于點,所以,建立等式,兩式作商即可得解.【題目詳解】設,交圓于點,所以易知:即.故答案為:【答案點睛】此題考查根據雙曲線上的點的坐標關系求解斜率關系,涉及雙曲線中的部分定值結論,若能熟記常見二級結論,此題可以簡化計算.16、【答案解析】

根據弦的垂直平分線經過圓心,結合圓心所在直線方程,即可求得圓心坐標.由兩點間距離公式,即可得半徑.【題目詳解】因為圓經過點則直線的斜率為所以與直線垂直的方程斜率為點的中點坐標為所以由點斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經過圓心,且圓心在直線上,設圓心所以圓心滿足解得所以圓心坐標為則圓的半徑為故答案為:【答案點睛】本題考查了直線垂直時的斜率關系,直線與直線交點的求法,直線與圓的位置關系,圓的半徑的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【答案解析】

(1)利用定義法求出函數在上單調遞增,由和,求出,求出,運用單調性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調遞增,恒成立,設,利用三角恒等變換化簡,結合恒成立的條件,構造新函數,利用單調性和最值,求出實數的取值范圍.【題目詳解】(1)設,,所以函數在上單調遞增,又因為和,則,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設,則,令,則,所以在區間上單調遞增,所以,根據條件,只要,所以.【答案點睛】本題考查利用定義法求函數的單調性和利用單調性求不等式的解集,考查不等式恒成立問題,還運用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉化思想和解題能力.18、(1),;(2).【答案解析】

(1)根據題意同時利用等差、等比數列的通項公式即可求得數列和的通項公式;(2)求出數列的通項公式,再利用錯位相減法即可求得數列的前2020項的和.【題目詳解】(1)依題意得:,所以,所以解得設等比數列的公比為,所以又(2)由(1)知,因為①當時,②由①②得,,即,又當時,不滿足上式,.數列的前2020項的和設③,則④,由③④得:,所以,所以.【答案點睛】本題考查等差數列和等比數列的通項公式、性質,錯位相減法求和,考查學生的邏輯推理能力,化歸與轉化能力及綜合運用數學知識解決問題的能力.考查的核心素養是邏輯推理與數學運算.是中檔題.19、(Ⅰ)存在點滿足題意,且,證明詳見解析;(Ⅱ).【答案解析】

(Ⅰ)可考慮采用補形法,取的中點為,連接,可結合等腰三角形性質和線面垂直性質,先證平面,即,若能證明,則可得證,可通過我們反推出點對應位置應在處,進而得證;(Ⅱ)采用建系法,以為坐標原點,以分別為軸建立空間直角坐標系,分別求出兩平面對應法向量,再結合向量夾角公式即可求解;【題目詳解】(Ⅰ)存在點滿足題意,且.證明如下:取的中點為,連接.則,所以平面.因為是的中點,所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內,,,所以,從而可得.又因為,所以平面.因為平面,所以平面平面.(Ⅱ)如圖所示,以為坐標原點,以分別為軸建立空間直角坐標系.易知,,,,所以,,.設平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【答案點睛】本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題20、(1)詳見解析;(2)詳見解析.【答案解析】

(1)利用平行四邊形的方法,證明平面.(2)通過證明平面,由此證得.【題目詳解】(1)設是中點,連接,由于是中點,所以且,而且,所以與平行且相等,所以四邊形是平行四邊形,所以,由于平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論