




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,共60分)1.設集合,若,則實數(shù)()A.0 B.1C. D.22.若,,,則有A. B.C. D.3.已知關于的方程在區(qū)間上存在兩個不同的實數(shù)根,則實數(shù)的取值范圍是()A. B.C. D.4.已知函數(shù):①;②;③;④;則下列函數(shù)圖象(第一象限部分)從左到右依次與函數(shù)序號的對應順序是()A.②①③④ B.②③①④C.④①③② D.④③①②5.比較,,的大小()A. B.C. D.6.設的兩根是,則A. B.C. D.7.對于每個實數(shù)x,設取兩個函數(shù)中的較小值.若動直線y=m與函數(shù)的圖象有三個不同的交點,它們的橫坐標分別為,則的取值范圍是()A. B.C. D.8.若和都是定義在上的奇函數(shù),則()A.0 B.1C.2 D.39.已知,,函數(shù)的零點為c,則()A.c<a<b B.a<c<bC.b<a<c D.a<b<c10.用二分法求方程的近似解時,可以取的一個區(qū)間是()A. B.C. D.11.已知圓(,為常數(shù))與.若圓心與圓心關于直線對稱,則圓與的位置關系是()A.內含 B.相交C.內切 D.相離12.已知集合0,,1,,則A. B.1,C.0,1, D.二、填空題(本大題共4小題,共20分)13.化簡=________14.若函數(shù)的圖象過點,則函數(shù)的圖象一定經(jīng)過點________.15.已知函數(shù)在區(qū)間上恰有個最大值,則的取值范圍是_____16.已知函數(shù),現(xiàn)有如下幾個命題:①該函數(shù)為偶函數(shù);
②是該函數(shù)的一個單調遞增區(qū)間;③該函數(shù)的最小正周期為;④該函數(shù)的圖像關于點對稱;⑤該函數(shù)值域為.其中正確命題的編號為______三、解答題(本大題共6小題,共70分)17.已知集合,,.(1)求,;(2)若,求實數(shù)a的取值范圍.18.在平面直角坐標系中,已知角的頂點都與坐標原點重合,始邊都與x軸的非負半軸重合,角的終邊與單位圓交于點,角的終邊在第二象限,與單位圓交于點Q,扇形的面積為.(1)求的值;(2)求的值.19.設函數(shù)f(x)=k?2x-(1)求k的值;(2)若不等式f(x)>a?2x-1(3)設g(x)=4x+4-x-4f(x),求20.如圖,三棱臺DEF-ABC中,AB=2DE,G,H分別為AC,BC的中點(1)求證:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求證:平面BCD⊥平面EGH.21.已知函數(shù),若函數(shù)的圖象過點,(1)求的值;(2)若,求實數(shù)的取值范圍;(3)若函數(shù)有兩個零點,求實數(shù)的取值范圍.22.已知函數(shù)fx(1)求函數(shù)fx(2)判斷函數(shù)fx(3)判斷函數(shù)fx在區(qū)間0,1上的單調性,并用定義證明
參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】可根據(jù)已知條件,先求解出的值,然后分別帶入集合A和集合B中去驗證是否滿足條件,即可完成求解.【詳解】集合,,所以,①當時,集合,此時,成立;②當時,集合,此時,不滿足題意,排除.故選:B.2、C【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的單調性分別將與作比較,從而得到結果.【詳解】本題正確選項:【點睛】本題考查根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)單調性比較大小的問題,常用方法是采用臨界值的方式,通過與臨界值的大小關系得到所求的大小關系.3、C【解析】本題首先可根據(jù)方程存在兩個不同的實數(shù)根得出、,然后設,分為、兩種情況進行討論,最后根據(jù)對稱軸的相關性質以及的大小即可得出結果.【詳解】因為方程存在兩個不同的實數(shù)根,所以,,解得或,設,對稱軸為,當時,因為兩個不同實數(shù)根在區(qū)間上,所以,即,解得,當時,因為兩個不同的實數(shù)根在區(qū)間上,所以,即,解得,綜上所述,實數(shù)的取值范圍是,故選:C.4、D【解析】根據(jù)指數(shù)函數(shù)、冪函數(shù)的性質進行選擇即可.【詳解】①:函數(shù)是實數(shù)集上的增函數(shù),且圖象過點,因此從左到右第三個圖象符合;②:函數(shù)是實數(shù)集上的減函數(shù),且圖象過點,因此從左到右第四個圖象符合;③:函數(shù)在第一象限內是減函數(shù),因此從左到右第二個圖象符合;④:函數(shù)在第一象限內是增函數(shù),因此從左到右第一個圖象符合,故選:D5、D【解析】由對數(shù)函數(shù)的單調性判斷出,再根據(jù)冪函數(shù)在上單調遞減判斷出,即可確定大小關系.【詳解】因為,,所以故選:D【點睛】本題考查利用對數(shù)函數(shù)及冪函數(shù)的單調性比較數(shù)的大小,屬于基礎題.6、D【解析】詳解】解得或或即,所以故選D7、C【解析】如圖,作出函數(shù)的圖象,其中,設與動直線的交點的橫坐標為,∵圖像關于對稱∴∵∴∴故選C點睛:本題首先考查新定義問題,首先從新定義理解函數(shù),為此解方程,確定分界點,從而得函數(shù)的具體表達式,畫出函數(shù)圖象,通過圖象確定三個數(shù)中具有對稱關系,,因此只要確定的范圍就能得到的范圍.8、A【解析】根據(jù)題意可知是周期為的周期函數(shù),以及,,由此即可求出結果.【詳解】因為和都是定義在上的奇函數(shù),所以,,所以,所以,所以是周期為周期函數(shù),所以因為是定義在上的奇函數(shù),所以,又是定義在上的奇函數(shù),所以,所以,即,所以.故選:A.9、B【解析】由函數(shù)零點存在定理可得,又,,從而即可得答案.【詳解】解:因為在上單調遞減,且,,所以的零點所在區(qū)間為,即.又因為,,所以a<c<b故選:B.10、B【解析】構造函數(shù)并判斷其單調性,借助零點存在性定理即可得解.【詳解】,令,在上單調遞增,并且圖象連續(xù),,,在區(qū)間內有零點,所以可以取的一個區(qū)間是.故選:B11、B【解析】由對稱求出,再由圓心距與半徑關系得圓與圓的位置關系【詳解】,,半徑為,關于直線的對稱點為,即,所以,圓半徑為,,又,所以兩圓相交故選:B12、A【解析】直接利用交集的運算法則化簡求解即可【詳解】集合,,則,故選A【點睛】研究集合問題,一定要抓住元素,看元素應滿足的屬性.研究兩集合的關系時,關鍵是將兩集合的關系轉化為元素間的關系,本題實質求滿足屬于集合且屬于集合的元素的集合.二、填空題(本大題共4小題,共20分)13、【解析】利用對數(shù)的運算法則即可得出【詳解】解:原式lg0.12=2+2lg10﹣1=2﹣2故答案為【點睛】本題考查了對數(shù)的運算法則,屬于基礎題14、【解析】函數(shù)的圖象可以看作的圖象先關于軸對稱,再向右平移4個單位得到,先求出關于軸的對稱點,再向右平移4個單位即得.【詳解】由題得,函數(shù)的圖象先關于軸對稱,再向右平移個單位得函數(shù),點關于軸的對稱點為,向右平移4個單位是,所以函數(shù)圖象一定經(jīng)過點.故答案為:.【點睛】本題主要考查函數(shù)的平移變換和對稱變換,考查了分析能力,屬于基礎題.15、【解析】將代入函數(shù)解析式,求出的取值范圍,根據(jù)正弦取8次最大值,求出的取值范圍【詳解】因為,,所以,又函數(shù)在區(qū)間上恰有個最大值,所以,得【點睛】三角函數(shù)最值問題要注意整體代換思想的體現(xiàn),由的取值范圍推斷的取值范圍16、②③【解析】由于為非奇非偶函數(shù),①錯誤.,此時,其在上為增函數(shù),②正確.由于,所以函數(shù)最小正周期為,③正確.由于,故④正確.當時,,故⑤錯誤.綜上所述,正確的編號為②③.三、解答題(本大題共6小題,共70分)17、(1),(2)【解析】(1)由交集和并集運算直接求解即可.(2)由,則【詳解】(1)由集合,則,(2)若,則,所以18、(1)(2)【解析】(1)利用任意角的三角函數(shù)定義進行求解;(2)先利用扇形的面積公式求出其圓心角,進而得到,再利用兩角和的余弦公式進行求解.小問1詳解】解:由任意角的三角函數(shù)定義,得,,;【小問2詳解】設,因為扇形的半徑為1,面積為,所以,即,又因為角的終邊在第二象限,所以不妨設,則.19、(1)1;(2)a<54;(3)最小值-2,此時x=【解析】(1)根據(jù)題意可得f0=0,即可求得(2)f(x)>a?2x-1(3)由題意g(x)=4x+4-x-42x-【詳解】(1)因為f(x)=k?2x-所以f0=0,所以k-1=0,解得所以f(x)=2當k=1時,f(-x)=2所以fx為奇函數(shù),故k=1(2)f(x)>a?2x-1所以只需a<-因為-12x所以a<5(3)因為g(x)=4x+可令t=2x-2-x,可得函數(shù)t則t2=4x+由ht為開口向上,對稱軸為t=2>所以t=2時,ht取得最小值-2此時2=2x-所以gx在1,+∞上的最小值為-2,此時【點睛】解題的關鍵熟練掌握二次函數(shù)的圖象與性質,并靈活應用,處理存在性問題時,若a<m(x),只需a<m(x)max,若a>m(x),只需a>m(x)min,處理恒成立問題時,若a<m(x),只需a<m(x)20、(1)見解析(2)見解析【解析】解析:(1)在三棱臺DEFABC中,BC=2EF,H為BC的中點,BH∥EF,BH=EF,四邊形BHFE為平行四邊形,有BE∥HF.BE∥平面FGH在△ABC中,G為AC的中點,H為BC的中點,GH∥AB.AB∥平面FGH又AB∩BE=B,所以平面ABED∥平面FGH.(2)連接HE,EGG,H分別為AC,BC的中點,GH∥AB.AB⊥BC,GH⊥BC.又H為BC的中點,EF∥HC,EF=HC,四邊形EFCH是平行四邊形,有CF∥HE.CF⊥BC,HE⊥BC.HE,GH?平面EGH,HE∩GH=H,BC⊥平面EGH.BC?平面BCD,平面BCD⊥平面EGH.21、(1).(2).(3).【解析】(1)由函數(shù)過點,代入函數(shù)即可得的值;(2)由可得的取值范圍;(3)由函數(shù)的大致圖象即可得的取值范圍.試題解析:(1),,,.(2),,.(3)當時,是減函數(shù),值域為.偶函數(shù),時,是增函數(shù),值域為,函數(shù)有兩個零點時,.點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)的值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解,對于一些比較復雜的函數(shù)的零點問題常用此方法求解.本題中在結合函數(shù)圖象分析得基礎上還用到了方程根的分布的有關知識22、(1)-1,1(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司環(huán)保活動方案
- 公司節(jié)能推廣活動方案
- 2025年行業(yè)倫理道德與法律法規(guī)考核試題及答案
- 2025年文化產(chǎn)業(yè)管理考試試卷及答案
- 2025年文藝策劃師職業(yè)發(fā)展評估考試試題及答案
- 2025年網(wǎng)絡營銷與電子商務考試試題及答案
- 2025年設施管理工程師職業(yè)資格考試試題及答案
- 2025年農業(yè)經(jīng)濟與發(fā)展考試試卷及答案
- 2025年歷史文化遺產(chǎn)保護與傳承考試卷及答案
- 2025年計算機網(wǎng)絡基本知識考試試題及答案
- 荊州中學2024-2025高二學年下學期6月月考 英語試卷
- 2025年上海市初中學業(yè)水平考試數(shù)學試卷真題(含答案)
- 有限空間作業(yè)通風時間專題
- 廣東省廣州市天河外國語學校2025年七年級英語第二學期期末綜合測試模擬試題含答案
- 2025年公務員綜合素質能力考試卷及答案
- TSZGFA-信息通信基礎設施工程規(guī)劃設計規(guī)范
- 《公路運營領域重大事故隱患判定標準》知識培訓
- 水利水電工程單元工程施工質量驗收評定表及填表說明
- HG-T 2006-2022 熱固性和熱塑性粉末涂料
- 國際金融(南開大學)智慧樹知到期末考試答案2024年
- 出國留學高中成績單最強模板
評論
0/150
提交評論