2022屆山東省商河縣龍桑寺鎮中考考前最后一卷數學試卷含解析_第1頁
2022屆山東省商河縣龍桑寺鎮中考考前最后一卷數學試卷含解析_第2頁
2022屆山東省商河縣龍桑寺鎮中考考前最后一卷數學試卷含解析_第3頁
2022屆山東省商河縣龍桑寺鎮中考考前最后一卷數學試卷含解析_第4頁
2022屆山東省商河縣龍桑寺鎮中考考前最后一卷數學試卷含解析_第5頁
免費預覽已結束,剩余16頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.我國古代數學名著《孫子算經》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有匹,小馬有匹,則可列方程組為()A. B.C. D.2.在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中5個黑球,從袋中隨機摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋中,攪勻后,再繼續摸出一球.以下是利用計算機模擬的摸球試驗次數與摸出黑球次數的列表:摸球試驗次數100100050001000050000100000摸出黑球次數46487250650082499650007根據列表,可以估計出m的值是()A.5 B.10 C.15 D.203.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學記數法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×1054.如圖,點從矩形的頂點出發,沿以的速度勻速運動到點,圖是點運動時,的面積隨運動時間變化而變化的函數關系圖象,則矩形的面積為()A. B. C. D.5.如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米6.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=67.如圖是一個放置在水平桌面的錐形瓶,它的俯視圖是()A. B. C. D.8.已知y關于x的函數圖象如圖所示,則當y<0時,自變量x的取值范圍是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<29.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里10.在平面直角坐標系中,點(-1,-2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題(共7小題,每小題3分,滿分21分)11.若m是方程2x2﹣3x﹣1=0的一個根,則6m2﹣9m+2016的值為_____.12.如圖,一艘輪船自西向東航行,航行到A處測得小島C位于北偏東60°方向上,繼續向東航行10海里到達點B處,測得小島C在輪船的北偏東15°方向上,此時輪船與小島C的距離為_________海里.(結果保留根號)13.因式分解:____________.14.亞洲陸地面積約為4400萬平方千米,將44000000用科學記數法表示為_____.15.如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交AC于E,交BC的延長線于F,若∠F=30°,DE=1,則BE的長是.16.如圖,矩形ABCD中,AB=2AD,點A(0,1),點C、D在反比例函數y=(k>0)的圖象上,AB與x軸的正半軸相交于點E,若E為AB的中點,則k的值為_____.17.2018年5月13日,中國首艘國產航空母艦首次執行海上試航任務,其排水量超過6萬噸,將數60000用科學記數法表示應為_______________.三、解答題(共7小題,滿分69分)18.(10分)閱讀材料:對于線段的垂直平分線我們有如下結論:到線段兩個端點距離相等的點在線段的垂直平分線上.即如圖①,若PA=PB,則點P在線段AB的垂直平分線上請根據閱讀材料,解決下列問題:如圖②,直線CD是等邊△ABC的對稱軸,點D在AB上,點E是線段CD上的一動點(點E不與點C、D重合),連結AE、BE,△ABE經順時針旋轉后與△BCF重合.(I)旋轉中心是點,旋轉了(度);(II)當點E從點D向點C移動時,連結AF,設AF與CD交于點P,在圖②中將圖形補全,并探究∠APC的大小是否保持不變?若不變,請求出∠APC的度數;若改變,請說出變化情況.19.(5分)我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F,G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F,G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)20.(8分)如圖,已知D是AC上一點,AB=DA,DE∥AB,∠B=∠DAE.求證:BC=AE.21.(10分)如圖1,AB為半圓O的直徑,半徑的長為4cm,點C為半圓上一動點,過點C作CE⊥AB,垂足為點E,點D為弧AC的中點,連接DE,如果DE=2OE,求線段AE的長.小何根據學習函數的經驗,將此問題轉化為函數問題解決.小華假設AE的長度為xcm,線段DE的長度為ycm.(當點C與點A重合時,AE的長度為0cm),對函數y隨自變量x的變化而變化的規律進行探究.下面是小何的探究過程,請補充完整:(說明:相關數據保留一位小數).(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm012345678y/cm01.62.53.34.04.75.85.7當x=6cm時,請你在圖中幫助小何完成作圖,并使用刻度尺度量此時線段DE的長度,填寫在表格空白處:(2)在圖2中建立平面直角坐標系,描出補全后的表中各組對應值為坐標的點,畫出該函數的圖象;(3)結合畫出的函數圖象解決問題,當DE=2OE時,AE的長度約為cm.22.(10分)如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(m,n)(m<0,n>0),E點在邊BC上,F點在邊OA上.將矩形OABC沿EF折疊,點B正好與點O重合,雙曲線y=k(1)若m=-8,n=4,直接寫出E、F的坐標;(2)若直線EF的解析式為y=3(3)若雙曲線y=k23.(12分)某漁業養殖場,對每天打撈上來的魚,一部分由工人運到集貿市場按10元/斤銷售,剩下的全部按3元/斤的購銷合同直接包銷給外面的某公司:養殖場共有30名工人,每名工人只能參與打撈與到集貿市場銷售中的一項工作,且每人每天可以打撈魚100斤或銷售魚50斤,設安排x名員工負責打撈,剩下的負責到市場銷售.(1)若養殖場一天的總銷售收入為y元,求y與x的函數關系式;(2)若合同要求每天銷售給外面某公司的魚至少200斤,在遵守合同的前提下,問如何分配工人,才能使一天的銷售收入最大?并求出最大值.24.(14分)已知,拋物線y=x2﹣x+與x軸分別交于A、B兩點(A點在B點的左側),交y軸于點F.(1)A點坐標為;B點坐標為;F點坐標為;(2)如圖1,C為第一象限拋物線上一點,連接AC,BF交于點M,若BM=FM,在直線AC下方的拋物線上是否存在點P,使S△ACP=4,若存在,請求出點P的坐標,若不存在,請說明理由;(3)如圖2,D、E是對稱軸右側第一象限拋物線上的兩點,直線AD、AE分別交y軸于M、N兩點,若OM?ON=,求證:直線DE必經過一定點.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

設大馬有匹,小馬有匹,根據題意可得等量關系:大馬數+小馬數=100,大馬拉瓦數+小馬拉瓦數=100,根據等量關系列出方程即可.【詳解】解:設大馬有匹,小馬有匹,由題意得:,故選:B.【點睛】本題主要考查的是由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系,列出方程組.2、B【解析】

由概率公式可知摸出黑球的概率為5m,分析表格數據可知摸出黑球次數【詳解】解:分析表格數據可知摸出黑球次數摸球實驗次數的值總是在0.5左右,則由題意可得5故選擇B.【點睛】本題考查了概率公式的應用.3、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】55000是5位整數,小數點向左移動4位后所得的數即可滿足科學記數法的要求,由此可知10的指數為4,所以,55000用科學記數法表示為5.5×104,故選B.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.4、C【解析】

由函數圖象可知AB=2×2=4,BC=(6-2)×2=8,根據矩形的面積公式可求出.【詳解】由函數圖象可知AB=2×2=4,BC=(6-2)×2=8,∴矩形的面積為4×8=32,故選:C.【點睛】本題考查動點運動問題、矩形面積等知識,根據圖形理解△ABP面積變化情況是解題的關鍵,屬于中考常考題型.5、B【解析】試題分析:要求下滑的距離,顯然需要分別放到兩個直角三角形中,運用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點:勾股定理的應用.6、D【解析】

本題應對原方程進行因式分解,得出(x-6)(x+1)=1,然后根據“兩式相乘值為1,這兩式中至少有一式值為1.”來解題.【詳解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故選D.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據方程的提點靈活選用合適的方法.本題運用的是因式分解法.7、B【解析】

根據俯視圖是從上面看到的圖形解答即可.【詳解】錐形瓶從上面往下看看到的是兩個同心圓.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.8、B【解析】y<0時,即x軸下方的部分,∴自變量x的取值范圍分兩個部分是?1<x<1或x>2.故選B.9、D【解析】

根據題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),

則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點睛】此題主要考查了勾股定理的應用以及方向角,正確應用勾股定理是解題關鍵.10、C【解析】:∵點的橫縱坐標均為負數,∴點(-1,-2)所在的象限是第三象限,故選C二、填空題(共7小題,每小題3分,滿分21分)11、2.【解析】

把x=m代入方程,求出2m2﹣3m=2,再變形后代入,即可求出答案.【詳解】解:∵m是方程2x2﹣3x﹣2=0的一個根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案為:2.【點睛】本題考查了求代數式的值和一元二次方程的解,解此題的關鍵是能求出2m2﹣3m=2.12、5【解析】

如圖,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性質求出BC即可.【詳解】如圖,作BH⊥AC于H.

在Rt△ABH中,∵AB=10海里,∠BAH=30°,

∴∠ABH=60°,BH=AB=5(海里),

在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),

∴BH=CH=5海里,

∴CB=5(海里).

故答案為:5.【點睛】本題考查了解直角三角形的應用-方向角問題,解題的關鍵是學會添加常用輔助線,構造特殊三角形解決問題.13、3(x-2)(x+2)【解析】

先提取公因式3,再根據平方差公式進行分解即可求得答案.注意分解要徹底.【詳解】原式=3(x2﹣4)=3(x-2)(x+2).故答案為3(x-2)(x+2).【點睛】本題考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式進行二次分解,注意分解要徹底.14、4.4×1【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.詳解:44000000=4.4×1,故答案為4.4×1.點睛:此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.15、2【解析】∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°。∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。又AB的垂直平分線DE交AC于E,∴∠EBA=∠A=30°。∴Rt△DBE中,BE=2DE=2。16、【解析】解:如圖,作DF⊥y軸于F,過B點作x軸的平行線與過C點垂直與x軸的直線交于G,CG交x軸于K,作BH⊥x軸于H,∵四邊形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E為AB的中點,∴AD=AE,在△ADF和△EAO中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=,k2=,∵k﹣1>0,∴k=.故答案為.點睛:本題考查了矩形的性質和反比例函數圖象上點的坐標特征.圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.17、【解析】【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】60000小數點向左移動4位得到6,所以60000用科學記數法表示為:6×1,故答案為:6×1.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.三、解答題(共7小題,滿分69分)18、B60【解析】分析:(1)根據旋轉的性質可得出結論;(2)根據旋轉的性質可得BF=CF,則點F在線段BC的垂直平分線上,又由AC=AB,可得點A在線段BC的垂直平分線上,由AF垂直平分BC,即∠CQP=90,進而得出∠APC的度數.詳解:(1)B,60;(2)補全圖形如圖所示;的大小保持不變,理由如下:設與交于點∵直線是等邊的對稱軸∴,∵經順時針旋轉后與重合∴,∴∴點在線段的垂直平分線上∵∴點在線段的垂直平分線上∴垂直平分,即∴點睛:本題考查了旋轉的性質,解題的關鍵是熟記旋轉的性質及垂直平分線的性質,注意只證明一點是不能說明這條直線是垂直平分線的.19、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】

(1)如圖1中,連接BD,根據三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據平行線的性質即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點E,H分別為邊AB,DA的中點,∴EH∥BD,EH=BD,∵點F,G分別為邊BC,CD的中點,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中點四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點E,F,G分別為邊AB,BC,CD的中點,∴EF=AC,FG=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設AC與BD交于點O.AC與PD交于點M,AC與EH交于點N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點:平行四邊形的判定與性質;中點四邊形.20、見解析【解析】

證明:∵DE∥AB,∴∠CAB=∠ADE.在△ABC和△DAE中,∵,∴△ABC≌△DAE(ASA).∴BC=AE.【點睛】根據兩直線平行,內錯角相等求出∠CAB=∠ADE,然后利用“角邊角”證明△ABC和△DAE全等,再根據全等三角形對應邊相等證明即可.21、(1)5.3(2)見解析(3)2.5或6.9【解析】

(1)(2)按照題意取點、畫圖、測量即可.(3)中需要將DE=2OE轉換為y與x的函數關系,注意DE為非負數,函數為分段函數.【詳解】(1)根據題意取點、畫圖、測量的x=6時,y=5.3故答案為5.3(2)根據數據表格畫圖象得(3)當DE=2OE時,問題可以轉化為折線y=與(2)中圖象的交點經測量得x=2.5或6.9時DE=2OE.故答案為2.5或6.9【點睛】動點問題的函數圖象探究題,考查了函數圖象的畫法,應用了數形結合思想和轉化的數學思想.22、(1)E(-3,4)、F(-5,0);(2)-334【解析】

(1)連接OE,BF,根據題意可知:BC=OA=8,BA=OC=4,設EC=x,則BE=OE=8-x,根據勾股定理可得:OC2+CE2(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE,證明△BGE≌△OGF,證明四邊形OEBF為菱形,令y=0,則3x+3=0,解得x=-3,根據菱形的性質得OF=OE=BE=BF=3令y=n,則3x+3=n,解得x=n-33(3)設EB=EO=x,則CE=-m-x,在Rt△COE中,根據勾股定理得到(-m-x)2+n2=x2,解得x=-m2+n22m,求出點E(m2-n22m?,?n)、F(即可求出tan∠EFO=-m【詳解】解:(1)如圖:連接OE,BF,E(-3,4)、F(-5,0)(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE可證:△BGE≌△OGF(ASA)∴BE=OF∴四邊形OEBF為菱形令y=0,則3x+3=0,解得x=-3令y=n,則3x+3=n,解得x=n-3在Rt△COE中,(-n-3解得n=3∴E(-3∴k=-(3)設EB=EO=x,則CE=-m-x,在Rt△COE中,(-m-x)2+n2=x2,解得x=-∴E(m2-n∴EF的中點為(m2將E(m2-n22mn(m2-n∴tan∠EFO=-【點睛】考查矩形的折疊與性質,勾股定理,一次函數的圖象與性質,待定系數法求反比例函數解析式,銳角三角函數等,綜合性比較強,難度較大.23、(1)y=﹣50x+10500;(2)安排12人打撈,18人銷售可使銷售利潤最大,最大銷售利潤為9900

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論