



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023屆咸寧市重點中學十校聯考最后數學測試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在測試卷卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.下列說法:①-102②數軸上的點與實數成一一對應關系;③﹣2是16的平方根;④任何實數不是有理數就是無理數;⑤兩個無理數的和還是無理數;⑥無理數都是無限小數,其中正確的個數有()A.2個 B.3個 C.4個 D.5個2.化簡的結果為()A.﹣1 B.1 C. D.3.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=-1,點B的坐標為(1,0),則下列結論:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正確的結論有()個.A.3 B.4 C.2 D.14.共享單車已經成為城市公共交通的重要組成部分,某共享單車公司經過調查獲得關于共享單車租用行駛時間的數據,并由此制定了新的收費標準:每次租用單車行駛a小時及以內,免費騎行;超過a小時后,每半小時收費1元,這樣可保證不少于50%的騎行是免費的.制定這一標準中的a的值時,參考的統計量是此次調查所得數據的()A.平均數 B.中位數 C.眾數 D.方差5.一、單選題在某校“我的中國夢”演講比賽中,有7名學生參加了決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前3名,不僅要了解自己的成績,還要了解這7名學生成績的()A.平均數 B.眾數 C.中位數 D.方差6.下列關于x的方程中一定沒有實數根的是()A. B. C. D.7.如圖圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.8.下列運算結果正確的是()A.3a2-a2=2 B.a2·a3=a6 C.(-a2)3=-a6 D.a2÷a2=a9.下列各式屬于最簡二次根式的有()A. B. C. D.10.如圖,已知函數y=﹣與函數y=ax2+bx的交點P的縱坐標為1,則不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>0二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在中,于點,于點,為邊的中點,連接,則下列結論:①,②,③為等邊三角形,④當時,.請將正確結論的序號填在橫線上__.12.若a是方程的根,則=_____.13.當關于x的一元二次方程ax2+bx+c=0有實數根,且其中一個根為另一個根的2倍時,稱之為“倍根方程”.如果關于x的一元二次方程x2+(m﹣2)x﹣2m=0是“倍根方程”,那么m的值為_____.14.方程=1的解是_____.15.在平面直角坐標系中,點A1,A2,A3和B1,B2,B3分別在直線y=和x軸上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.則A3的坐標為_______.
.16.如圖,甲和乙同時從學校放學,兩人以各自送度勻速步行回家,甲的家在學校的正西方向,乙的家在學校的正東方向,乙家離學校的距離比甲家離學校的距離遠3900米,甲準備一回家就開始做什業,打開書包時發現錯拿了乙的練習冊.于是立即步去追乙,終于在途中追上了乙并交還了練習冊,然后再以先前的速度步行回家,(甲在家中耽擱和交還作業的時間忽略不計)結果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學校出發的時間x分鐘的函數關系圖,則甲的家和乙的家相距_____米.三、解答題(共8題,共72分)17.(8分)某校航模小組借助無人飛機航拍校園,如圖,無人飛機從A處水平飛行至B處需10秒,A在地面C的北偏東12°方向,B在地面C的北偏東57°方向.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結果精確到0.1米,參考數據:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)18.(8分)小方與同學一起去郊游,看到一棵大樹斜靠在一小土坡上,他想知道樹有多長,于是他借來測角儀和卷尺.如圖,他在點C處測得樹AB頂端A的仰角為30°,沿著CB方向向大樹行進10米到達點D,測得樹AB頂端A的仰角為45°,又測得樹AB傾斜角∠1=75°.(1)求AD的長.(2)求樹長AB.19.(8分)如圖,有四張背面完全相同的紙牌A,B,C,D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;小明和小亮約定做一個游戲,其規則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用A,B,C,D表示).20.(8分)文藝復興時期,意大利藝術大師達.芬奇研究過用圓弧圍成的部分圖形的面積問題.已知正方形的邊長是2,就能求出圖中陰影部分的面積.證明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S陰影=S1+S6=S1+S2+S3=.21.(8分)如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數y=(k≠0)的圖象經過點B.求反比例函數的解析式;若點E恰好落在反比例函數y=上,求平行四邊形OBDC的面積.22.(10分)由我國完全自主設計、自主建造的首艘國產航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續航行至小島的正南方向的處,求還需航行的距離的長.23.(12分)某藥廠銷售部門根據市場調研結果,對該廠生產的一種新型原料藥未來兩年的銷售進行預測,并建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數關系,其圖象是函數P=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關系:Q=(1)當8<t≤24時,求P關于t的函數解析式;(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)①求w關于t的函數解析式;②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續生產和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.24.如圖,在△ABC中,D、E分別是邊AB、AC上的點,DE∥BC,點F在線段DE上,過點F作FG∥AB、FH∥AC分別交BC于點G、H,如果BG:GH:HC=2:4:1.求的值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(共10小題,每小題3分,共30分)1、C【答案解析】
根據平方根,數軸,有理數的分類逐一分析即可.【題目詳解】①∵-102=10,∴②數軸上的點與實數成一一對應關系,故說法正確;③∵16=4,故-2是16的平方根,故說法正確;④任何實數不是有理數就是無理數,故說法正確;⑤兩個無理數的和還是無理數,如2和-2⑥無理數都是無限小數,故說法正確;故正確的是②③④⑥共4個;故選C.【答案點睛】本題考查了有理數的分類,數軸及平方根的概念,有理數都可以化為小數,其中整數可以看作小數點后面是零的小數,分數可以化為有限小數或無限循環小數;無理數是無限不循環小數,其中有開方開不盡的數,如2,2、B【答案解析】
先把分式進行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【題目詳解】解:.故選B.3、A【答案解析】
利用拋物線的對稱性可確定A點坐標為(-3,0),則可對①進行判斷;利用判別式的意義和拋物線與x軸有2個交點可對②進行判斷;由拋物線開口向下得到a>0,再利用對稱軸方程得到b=2a>0,則可對③進行判斷;利用x=-1時,y<0,即a-b+c<0和a>0可對④進行判斷.【題目詳解】∵拋物線的對稱軸為直線x=-1,點B的坐標為(1,0),∴A(-3,0),∴AB=1-(-3)=4,所以①正確;∵拋物線與x軸有2個交點,∴△=b2-4ac>0,所以②正確;∵拋物線開口向下,∴a>0,∵拋物線的對稱軸為直線x=-=-1,∴b=2a>0,∴ab>0,所以③錯誤;∵x=-1時,y<0,∴a-b+c<0,而a>0,∴a(a-b+c)<0,所以④正確.故選A.【答案點睛】本題考查了拋物線與x軸的交點:對于二次函數y=ax2+bx+c(a,b,c是常數,a≠0),△=b2-4ac決定拋物線與x軸的交點個數:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.也考查了二次函數的性質.4、B【答案解析】
根據需要保證不少于50%的騎行是免費的,可得此次調查的參考統計量是此次調查所得數據的中位數.【題目詳解】因為需要保證不少于50%的騎行是免費的,所以制定這一標準中的a的值時,參考的統計量是此次調查所得數據的中位數,故選B.【答案點睛】本題考查了中位數的知識,中位數是以它在所有標志值中所處的位置確定的全體單位標志值的代表值,不受分布數列的極大或極小值影響,從而在一定程度上提高了中位數對分布數列的代表性。5、C【答案解析】
由于其中一名學生想要知道自己能否進入前3名,共有7名選手參加,故應根據中位數的意義分析.【題目詳解】由于總共有7個人,且他們的成績各不相同,第4的成績是中位數,要判斷是否進入前3名,故應知道中位數的多少.故選C.【答案點睛】此題主要考查統計的有關知識,主要包括平均數、中位數、眾數、方差的意義.反映數據集中程度的統計量有平均數、中位數、眾數、方差等,各有局限性,因此要對統計量進行合理的選擇和恰當的運用.6、B【答案解析】
根據根的判別式的概念,求出△的正負即可解題.【題目詳解】解:A.x2-x-1=0,△=1+4=50,∴原方程有兩個不相等的實數根,B.,△=36-144=-1080,∴原方程沒有實數根,C.,,△=10,∴原方程有兩個不相等的實數根,D.,△=m2+80,∴原方程有兩個不相等的實數根,故選B.【答案點睛】本題考查了根的判別式,屬于簡單題,熟悉根的判別式的概念是解題關鍵.7、A【答案解析】A.是軸對稱圖形,是中心對稱圖形,故本選項正確;B.是中心對稱圖,不是軸對稱圖形,故本選項錯誤;C.不是中心對稱圖,是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,是中心對稱圖形,故本選項錯誤。故選A.8、C【答案解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.9、B【答案解析】
先根據二次根式的性質化簡,再根據最簡二次根式的定義判斷即可.【題目詳解】A選項:,故不是最簡二次根式,故A選項錯誤;B選項:是最簡二次根式,故B選項正確;C選項:,故不是最簡二次根式,故本選項錯誤;D選項:,故不是最簡二次根式,故D選項錯誤;
故選:B.【答案點睛】考查了對最簡二次根式的定義的理解,能理解最簡二次根式的定義是解此題的關鍵.10、C【答案解析】
首先求出P點坐標,進而利用函數圖象得出不等式ax2+bx+>1的解集.【題目詳解】∵函數y=﹣與函數y=ax2+bx的交點P的縱坐標為1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故選C.【答案點睛】本題考查了反比例函數圖象上點的坐標特征,解題的關鍵是正確得出P點坐標.二、填空題(本大題共6個小題,每小題3分,共18分)11、①③④【答案解析】
①根據直角三角形斜邊上的中線等于斜邊的一半可判斷①;②先證明△ABM∽△ACN,再根據相似三角形的對應邊成比例可判斷②;③先根據直角三角形兩銳角互余的性質求出∠ABM=∠ACN=30°,再根據三角形的內角和定理求出∠BCN+∠CBM=60°,然后根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據有一個角是60°的等腰三角形是等邊三角形可判斷③;④當∠ABC=45°時,∠BCN=45°,進而判斷④.【題目詳解】①∵BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,∴PM=BC,PN=BC,∴PM=PN,正確;②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,錯誤;③∵∠A=60°,BM⊥AC于點M,CN⊥AB于點N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵點P是BC的中點,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等邊三角形,正確;④當∠ABC=45°時,∵CN⊥AB于點N,∴∠BNC=90°,∠BCN=45°,∵P為BC中點,可得BC=PB=PC,故④正確.所以正確的選項有:①③④故答案為①③④【答案點睛】本題主要考查了直角三角形斜邊的中線等于斜邊的一半的性質,相似三角形、等邊三角形、等腰直角三角形的判定與性質,等腰三角形三線合一的性質,仔細分析圖形并熟練掌握性質是解題的關鍵.12、1【答案解析】
利用一元二次方程解的定義得到3a2-a=2,再把變形為,然后利用整體代入的方法計算.【題目詳解】∵a是方程的根,
∴3a2-a-2=0,
∴3a2-a=2,
∴==5-2×2=1.
故答案為:1.【答案點睛】此題考查一元二次方程的解,解題關鍵在于掌握能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.13、-1或-4【答案解析】分析:設“倍根方程”的一個根為,則另一根為,由一元二次方程根與系數的關系可得,由此可列出關于m的方程,解方程即可求得m的值.詳解:由題意設“倍根方程”的一個根為,另一根為,則由一元二次方程根與系數的關系可得:,∴,∴,化簡整理得:,解得.故答案為:-1或-4.點睛:本題解題的關鍵是熟悉一元二次方程根與系數的關系:若一元二次方程的兩根分別為,則.14、x=3【答案解析】去分母得:x﹣1=2,解得:x=3,經檢驗x=3是分式方程的解,故答案為3.【答案點睛】本題主要考查解分式方程,解分式方程的思路是將分式方程化為整式方程,然后求解.去分母后解出的結果須代入最簡公分母進行檢驗,結果為零,則原方程無解;結果不為零,則為原方程的解.15、A3()【答案解析】
設直線y=與x軸的交點為G,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,由條件可求得,再根據等腰三角形可分別求得A1D、A2E、A3F,可得到A1,A2,A3的坐標.【題目詳解】設直線y=與x軸的交點為G,
令y=0可解得x=-4,
∴G點坐標為(-4,0),
∴OG=4,
如圖1,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,
∵△A1B1O為等腰直角三角形,
∴A1D=OD,
又∵點A1在直線y=x+上,
∴=,即=,解得A1D=1=()0,
∴A1(1,1),OB1=2,
同理可得=,即=,解得A2E==()1,則OE=OB1+B1E=,
∴A2(,),OB2=5,
同理可求得A3F==()2,則OF=5+=,
∴A3(,);故答案為(,)【答案點睛】本題主要考查等腰三角形的性質和直線上點的坐標特點,根據題意找到點的坐標的變化規律是解題的關鍵,注意觀察數據的變化.16、5200【答案解析】設甲到學校的距離為x米,則乙到學校的距離為(3900+x),甲的速度為4y(米/分鐘),則乙的速度為3y(米/分鐘),依題意得:解得所以甲到學校距離為2400米,乙到學校距離為6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【答案點睛】本題考查一次函數的應用,二元一次方程組的應用等知識,解題的關鍵是讀懂圖象信息.三、解答題(共8題,共72分)17、29.8米.【答案解析】
作,,根據題意確定出與的度數,利用銳角三角函數定義求出與的長度,由求出的長度,即可求出的長度.【題目詳解】解:如圖,作,,由題意得:米,米,則米,答:這架無人飛機的飛行高度為米.【答案點睛】此題考查了解直角三角形的應用﹣仰角俯角問題,熟練掌握銳角三角函數定義是解本題的關鍵.18、(1);(2).【答案解析】測試卷分析:(1)過點A作AE⊥CB于點E,設AE=x,分別表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)過點B作BF⊥AC于點F,設BF=y,分別表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的長度.測試卷解析:(1)如圖,過A作AH⊥CB于H,設AH=x,CH=x,DH=x.∵CH―DH=CD,∴x―x=10,∴x=.∵∠ADH=45°,∴AD=x=.(2)如圖,過B作BM⊥AD于M.∵∠1=75°,∠ADB=45°,∴∠DAB=30°.設MB=m,∴AB=2m,AM=m,DM=m.∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.19、(1).(2)公平.【答案解析】
測試卷分析:(1)首先根據題意結合概率公式可得答案;(2)首先根據(1)求得摸出兩張牌面圖形都是軸對稱圖形的有16種情況,若摸出兩張牌面圖形都是中心對稱圖形的有12種情況,繼而求得小明贏與小亮贏的概率,比較概率的大小,即可知這個游戲是否公平.測試卷解析:(1)共有4張牌,正面是中心對稱圖形的情況有3種,所以摸到正面是中心對稱圖形的紙牌的概率是;(2)列表得:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
共產生12種結果,每種結果出現的可能性相同,其中兩張牌都是軸對稱圖形的有6種,∴P(兩張都是軸對稱圖形)=,因此這個游戲公平.考點:游戲公平性;軸對稱圖形;中心對稱圖形;概率公式;列表法與樹狀圖法.20、S1,S3,S4,S5,1【答案解析】
利用圖形的拼割,正方形的性質,尋找等面積的圖形,即可解決問題.【題目詳解】由題意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S陰影面積=S1+S6=S1+S1+S3=1.故答案為S1,S3,S4,S5,1.【答案點睛】考查正方形的性質、矩形的性質、扇形的面積等知識,解題的關鍵是靈活運用所學知識解決問題.21、(1)y=;(2)1;【答案解析】
(1)把點B的坐標代入反比例解析式求得k值,即可求得反比例函數的解析式;(2)根據點B(3,4)、C(m,0)的坐標求得邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數的解析式求得m的值,根據平行四邊形的面積公式即可求解.【題目詳解】(1)把B坐標代入反比例解析式得:k=12,則反比例函數解析式為y=;(2)∵B(3,4),C(m,0),∴邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數得2=,解得:m=9,則平行四邊形OBCD的面積=9×4=1.【答案點睛】本題為反比例函數的綜合應用,考查的知識點有待定系數法、平行四邊形的性質、中點的求法.在(1)中注意待定系數法的應用,在(2)中用m表示出E點的坐標是解題的關鍵.22、還需要航行的距離的長為20.4海里.【答案解析】分析:根據題意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函數得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.詳解:由題知:,,.在中,,,(海里).在中,,,(海里).答:還需要航行的距離的長為20.4海里.點睛:此題考查了解直角三角形的應用-方向角問題,三角函數的應用;求出CD的長度是解決問題的關鍵.23、(1)P=t+2;(2)①當0<t≤8時,w=240;當8<t≤12時,w=2t2+12t+16;當12<t≤24時,w=﹣t2+42t+88;②此范圍所對應的月銷售量P的最小值為12噸,最大值為19噸.【答案解析】分析:(1)設8<t≤24時,P=kt+b,將A(8,10)、B(24,26
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業智能化與人力資源的變革
- 工業安全與智能制造的關系
- 工業污染源監測的新技術動態
- 工業物聯網在生產車間的應用實踐
- 工業自動化中機器視覺算法優化探討
- 工業能源管理與節能減排技術應用
- 工業綠色化與節能減排技術
- 工業級智能硬件產品的設計要求與標準
- 工業火災防控策略與方法
- 工業設計在制造業的未來應用
- 2025年全國普通高校招生全國統一考試數學試卷(新高考Ⅰ卷)含答案
- T/CSPSTC 75-2021微動探測技術規程
- 【KAWO科握】2025年中國社交媒體平臺指南報告
- 大部分分校:地域文化形考任務一-國開(CQ)-國開期末復習資料
- 《藥物設計學》課程教學大綱
- DB5301∕T 43-2020 城鎮污水處理廠主要水污染物排放限值
- 炮車專項方案
- 解讀三級公立醫院績效考核課件
- 華能集團全員績效考核指導意見
- 高三地理復習資料_《極地地區》導學案
- CJJ101-2004埋地聚乙烯給水管道工程技術規程
評論
0/150
提交評論