山東省龍口市2022年中考數學押題卷含解析_第1頁
山東省龍口市2022年中考數學押題卷含解析_第2頁
山東省龍口市2022年中考數學押題卷含解析_第3頁
山東省龍口市2022年中考數學押題卷含解析_第4頁
山東省龍口市2022年中考數學押題卷含解析_第5頁
免費預覽已結束,剩余21頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,則圖中相似三角形共有()A.1對 B.2對 C.3對 D.4對2.若函數y=kx﹣b的圖象如圖所示,則關于x的不等式k(x﹣3)﹣b>0的解集為()A.x<2 B.x>2 C.x<5 D.x>53.二元一次方程組的解是()A. B. C. D.4.如圖,下列各數中,數軸上點A表示的可能是()A.4的算術平方根 B.4的立方根 C.8的算術平方根 D.8的立方根5.如圖,若a∥b,∠1=60°,則∠2的度數為()A.40° B.60° C.120° D.150°6.如圖是用八塊相同的小正方體搭建的幾何體,它的左視圖是()A. B.C. D.7.如圖,已知點A在反比例函數y=上,AC⊥x軸,垂足為點C,且△AOC的面積為4,則此反比例函數的表達式為()A.y= B.y= C.y= D.y=﹣8.我們從不同的方向觀察同一物體時,可能看到不同的圖形,則從正面、左面、上面觀察都不可能看到矩形的是()A. B. C. D.9.如果(,均為非零向量),那么下列結論錯誤的是()A.// B.-2=0 C.= D.10.下列安全標志圖中,是中心對稱圖形的是()A. B. C. D.11.如圖,在?ABCD中,用直尺和圓規作∠BAD的平分線AG交BC于點E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.1212.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,某校根據學生上學方式的一次抽樣調查結果,繪制出一個未完成的扇形統計圖,若該校共有學生1500人,則據此估計步行的有_____.14.已知線段AB=2cm,點C在線段AB上,且AC2=BC·AB,則AC的長___________cm.15.如圖,在梯形ABCD中,AB∥CD,∠C=90°,BC=CD=4,AD=2,若,用、表示=_____.16.如圖,在邊長為3的正方形ABCD中,點E是BC邊上的點,EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點P,則PC的長為_____.17.已知:正方形ABCD.求作:正方形ABCD的外接圓.作法:如圖,(1)分別連接AC,BD,交于點O;(2)以點O為圓心,OA長為半徑作⊙O,⊙O即為所求作的圓.請回答:該作圖的依據是__________________________________.18.如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點,過D點作AB的垂線交AC于點E,BC=6,sinA=,則DE=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,點A的坐標為(﹣1,0),拋物線的對稱軸直線x=交x軸于點D.(1)求拋物線的解析式;(2)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,交x軸于點G,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標;(3)在(2)的條件下,將線段FG繞點G順時針旋轉一個角α(0°<α<90°),在旋轉過程中,設線段FG與拋物線交于點N,在線段GB上是否存在點P,使得以P、N、G為頂點的三角形與△ABC相似?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.20.(6分)A糧倉和B糧倉分別庫存糧食12噸和6噸,現決定支援給C市10噸和D市8噸.已知從A糧倉調運一噸糧食到C市和D市的運費分別為400元和800元;從B糧倉調運一噸糧食到C市和D市的運費分別為300元和500元.設B糧倉運往C市糧食x噸,求總運費W(元)關于x的函數關系式.(寫出自變量的取值范圍)若要求總運費不超過9000元,問共有幾種調運方案?求出總運費最低的調運方案,最低運費是多少?21.(6分)某商場服裝部為了調動營業員的積極性,決定實行目標管理,根據目標完成的情況對營業員進行適當的獎勵.為了確定一個適當的月銷售目標,商場服裝部統計了每位營業員在某月的銷售額(單位:萬元),數據如下:171816132415282618192217161932301614152615322317151528281619對這30個數據按組距3進行分組,并整理、描述和分析如下.頻數分布表組別一二三四五六七銷售額頻數79322數據分析表平均數眾數中位數20.318請根據以上信息解答下列問題:填空:a=,b=,c=;若將月銷售額不低于25萬元確定為銷售目標,則有位營業員獲得獎勵;若想讓一半左右的營業員都能達到銷售目標,你認為月銷售額定為多少合適?說明理由.22.(8分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點E,F同時從B點出發,沿射線BC向右勻速移動,已知點F的移動速度是點E移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設E點移動距離為x(0<x<6).(1)∠DCB=度,當點G在四邊形ABCD的邊上時,x=;(2)在點E,F的移動過程中,點G始終在BD或BD的延長線上運動,求點G在線段BD的中點時x的值;(3)當2<x<6時,求△EFG與四邊形ABCD重疊部分面積y與x之間的函數關系式,當x取何值時,y有最大值?并求出y的最大值.23.(8分)《九章算術》中有這樣一道題,原文如下:今有甲乙二人持錢不知其數.甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?大意為:今有甲、乙二人,不知其錢包里有多少錢.若乙把其一半的錢給甲,則甲的錢數為;若甲把其的錢給乙,則乙的錢數也能為,問甲、乙各有多少錢?請解答上述問題.24.(10分)如圖,反比例函數y=(x>0)的圖象與一次函數y=2x的圖象相交于點A,其橫坐標為1.(1)求k的值;(1)點B為此反比例函數圖象上一點,其縱坐標為2.過點B作CB∥OA,交x軸于點C,求點C的坐標.25.(10分)某翻譯團為成為2022年冬奧會志愿者做準備,該翻譯團一共有五名翻譯,其中一名只會翻譯西班牙語,三名只會翻譯英語,還有一名兩種語言都會翻譯.求從這五名翻譯中隨機挑選一名會翻譯英語的概率;若從這五名翻譯中隨機挑選兩名組成一組,請用樹狀圖或列表的方法求該紐能夠翻譯上述兩種語言的概率.26.(12分)現有一次函數y=mx+n和二次函數y=mx2+nx+1,其中m≠0,若二次函數y=mx2+nx+1經過點(2,0),(3,1),試分別求出兩個函數的解析式.若一次函數y=mx+n經過點(2,0),且圖象經過第一、三象限.二次函數y=mx2+nx+1經過點(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.若二次函數y=mx2+nx+1的頂點坐標為A(h,k)(h≠0),同時二次函數y=x2+x+1也經過A點,已知﹣1<h<1,請求出m的取值范圍.27.(12分)如圖,在平面直角坐標系中,△AOB的三個頂點坐標分別為A(1,0),O(0,0),B(2,2).以點O為旋轉中心,將△AOB逆時針旋轉90°,得到△A1OB1.畫出△A1OB1;直接寫出點A1和點B1的坐標;求線段OB1的長度.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三對相似三角形.故選C.2、C【解析】

根據函數圖象知:一次函數過點(2,0);將此點坐標代入一次函數的解析式中,可求出k、b的關系式;然后將k、b的關系式代入k(x﹣3)﹣b>0中進行求解即可.【詳解】解:∵一次函數y=kx﹣b經過點(2,0),∴2k﹣b=0,b=2k.函數值y隨x的增大而減小,則k<0;解關于k(x﹣3)﹣b>0,移項得:kx>3k+b,即kx>1k;兩邊同時除以k,因為k<0,因而解集是x<1.故選C.【點睛】本題考查一次函數與一元一次不等式.3、B【解析】

利用加減消元法解二元一次方程組即可得出答案【詳解】解:①﹣②得到y=2,把y=2代入①得到x=4,∴,故選:B.【點睛】此題考查了解二元一次方程組,解方程組利用了消元的思想,消元的方法有:代入消元法與加減消元法.4、C【解析】

解:由題意可知4的算術平方根是2,4的立方根是<2,8的算術平方根是,2<<3,8的立方根是2,

故根據數軸可知,

故選C5、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質,對頂角相等的性質,熟記性質是解題的關鍵.平行線的性質定理:兩直線平行,同位角相等,內錯角相等,同旁內角互補,兩條平行線之間的距離處處相等.6、B【解析】

根據幾何體的左視圖是從物體的左面看得到的視圖,對各個選項中的圖形進行分析,即可得出答案.【詳解】左視圖是從左往右看,左側一列有2層,右側一列有1層1,選項B中的圖形符合題意,故選B.【點睛】本題考查了簡單組合體的三視圖,理解掌握三視圖的概念是解答本題的關鍵.主視圖是從物體的正面看得到的視圖,左視圖是從物體的左面看得到的視圖,俯視圖是從物體的上面看得到的視圖.7、C【解析】

由雙曲線中k的幾何意義可知據此可得到|k|的值;由所給圖形可知反比例函數圖象的兩支分別在第一、三象限,從而可確定k的正負,至此本題即可解答.【詳解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故選C.【點睛】本題是關于反比例函數的題目,需結合反比例函數中系數k的幾何意義解答;8、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依此找到從正面、左面、上面觀察都不可能看到矩形的圖形.【詳解】A、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項錯誤;B、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項錯誤;C、主視圖為等腰梯形,左視圖為等腰梯形,俯視圖為圓環,從正面、左面、上面觀察都不可能看到長方形,故本選項正確;D、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項錯誤.故選C.【點睛】本題重點考查了三視圖的定義考查學生的空間想象能力,關鍵是根據主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形解答.9、B【解析】試題解析:向量最后的差應該還是向量.故錯誤.故選B.10、B【解析】試題分析:A.不是中心對稱圖形,故此選項不合題意;B.是中心對稱圖形,故此選項符合題意;C.不是中心對稱圖形,故此選項不符合題意;D.不是中心對稱圖形,故此選項不合題意;故選B.考點:中心對稱圖形.11、B【解析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進而得出AE=2AO=1.故選B.考點:1、作圖﹣基本作圖,2、平行四邊形的性質,3、勾股定理,4、平行線的性質12、C【解析】

根據題意求出長方形廣告牌每平方米的成本,根據相似多邊形的性質求出擴大后長方形廣告牌的面積,計算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴大為原來的3倍,則面積擴大為原來的9倍,∴擴大后長方形廣告牌的面積=9×6=54m2,∴擴大后長方形廣告牌的成本是54×20=1080元,故選C.【點睛】本題考查的是相似多邊形的性質,掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

∵騎車的學生所占的百分比是×100%=35%,∴步行的學生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若該校共有學生1500人,則據此估計步行的有1500×40%=1(人),故答案為1.14、【解析】

設AC=x,則BC=2-x,根據AC2=BC·AB列方程求解即可.【詳解】解:設AC=x,則BC=2-x,根據AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案為.【點睛】本題考查了黃金分割的應用,關鍵是明確黃金分割所涉及的線段的比.15、【解析】

過點A作AE⊥DC,利用向量知識解題.【詳解】解:過點A作AE⊥DC于E,∵AE⊥DC,BC⊥DC,∴AE∥BC,又∵AB∥CD,∴四邊形AECB是矩形,∴AB=EC,AE=BC=4,∴DE===2,∴AB=EC=2=DC,∵,∴,∵,∴,∴,故答案為.【點睛】向量知識只有使用滬教版(上海)教材的學生才學過,全國絕大部分地區將向量放在高中階段學習.16、【解析】

在AB上取BN=BE,連接EN,根據已知及正方形的性質利用ASA判定△ANE≌△ECP,從而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解決問題.【詳解】在AB上取BN=BE,連接EN,作PM⊥BC于M.∵四邊形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.故答案為:.【點睛】本題考查了正方形的性質、全等三角形的判定和性質、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考??碱}型.17、正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【解析】

利用正方形的性質得到OA=OB=OC=OD,則以點O為圓心,OA長為半徑作⊙O,點B、C、D都在⊙O上,從而得到⊙O為正方形的外接圓.【詳解】∵四邊形ABCD為正方形,∴OA=OB=OC=OD,∴⊙O為正方形的外接圓.故答案為正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.18、【解析】

∵在Rt△ABC中,BC=6,sinA=∴AB=10∴.∵D是AB的中點,∴AD=AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴即解得:DE=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(1),E(1,1);(3)存在,P點坐標可以為(1+,5)或(3,5).【解析】

(1)設B(x1,5),由已知條件得,進而得到B(2,5).又由對稱軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設E(m,=﹣m+1.),F(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點坐標.(3)設N點為(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點坐標.又由△ABC∽△GNP,且時,得n=3或n=﹣2(舍去).求得P點坐標.【詳解】解:(1)設B(x1,5).由A(﹣1,5),對稱軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1)如圖1,∵B(2,5),C(5,1).∴直線BC的解析式為y=﹣x+1.由E在直線BC上,則設E(m,=﹣m+1.),F(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF?OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD?OC=×(2﹣)×1=∴S四邊形CDBF=S△CBF+S△CDB═﹣m1+2m+.化為頂點式得,S四邊形CDBF=﹣(m﹣1)1+.當m=1時,S四邊形CDBF最大,為.此時,E點坐標為(1,1).(3)存在.如圖1,由線段FG繞點G順時針旋轉一個角α(5°<α<95°),設N(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC為直角三角形.當△ABC∽△GNP,且時,即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此時P點坐標為(1+,5).當△ABC∽△GNP,且時,即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此時P點坐標為(3,5).綜上所述,滿足題意的P點坐標可以為,(1+,5),(3,5).【點睛】本題考查求拋物線,三角形的性質和面積的求法,直角三角形的判定,以及三角形相似的性質,屬于較難題.20、(1)w=200x+8600(0≤x≤6);(2)有3種調運方案,方案一:從B市調運到C市0臺,D市6臺;從A市調運到C市10臺,D市2臺;方案二:從B市調運到C市1臺,D市5臺;從A市調運到C市9臺,D市3臺;方案三:從B市調運到C市2臺,D市4臺;從A市調運到C市8臺,D市4臺;(3)從A市調運到C市10臺,D市2臺;最低運費是8600元.【解析】

(1)設出B糧倉運往C的數量為x噸,然后根據A,B兩市的庫存量,和C,D兩市的需求量,分別表示出B運往C,D的數量,再根據總費用=A運往C的運費+A運往D的運費+B運往C的運費+B運往D的運費,列出函數關系式;(2)由(1)中總費用不超過9000元,然后根據取值范圍來得出符合條件的方案;(3)根據(1)中的函數式以及自變量的取值范圍即可得出費用最小的方案.【詳解】解:(1)設B糧倉運往C市糧食x噸,則B糧倉運往D市糧食6﹣x噸,A糧倉運往C市糧食10﹣x噸,A糧倉運往D市糧食12﹣(10﹣x)=x+2噸,總運費w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3種調運方案方案一:從B市調運到C市0臺,D市6臺;從A市調運到C市10臺,D市2臺;方案二:從B市調運到C市1臺,D市5臺;從A市調運到C市9臺,D市3臺;方案三:從B市調運到C市2臺,D市4臺;從A市調運到C市8臺,D市4臺;(3)w=200x+8600k>0,所以當x=0時,總運費最低.也就是從B市調運到C市0臺,D市6臺;從A市調運到C市10臺,D市2臺;最低運費是8600元.【點睛】本題重點考查函數模型的構建,考查利用一次函數的有關知識解答實際應用題,解答一次函數的應用問題中,要注意自變量的取值范圍還必須使實際問題有意義.21、(1)眾數為15;(2)3,4,15;8;(3)月銷售額定為18萬,有一半左右的營業員能達到銷售目標.【解析】

根據數據可得到落在第四組、第六組的個數分別為3個、4個,所以a=3,b=4,再根據數據可得15出現了5次,出現次數最多,所以眾數c=15;從頻數分布表中可以看出月銷售額不低于25萬元的營業員有8個,所以本小題答案為:8;本題是考查中位數的知識,根據中位數可以讓一半左右的營業員達到銷售目標.【詳解】解:(1)在范圍內的數據有3個,在范圍內的數據有4個,15出現的次數最大,則眾數為15;(2)月銷售額不低于25萬元為后面三組數據,即有8位營業員獲得獎勵;故答案為3,4,15;8;(3)想讓一半左右的營業員都能達到銷售目標,我認為月銷售額定為18萬合適.因為中位數為18,即大于18與小于18的人數一樣多,所以月銷售額定為18萬,有一半左右的營業員能達到銷售目標.【點睛】本題考査了對樣本數據進行分析的相關知識,考查了頻數分布表、平均數、眾數和中位數的知識,解題關鍵是根據數據整理成頻數分布表,會求數據的平均數、眾數、中位數.并利用中位數的意義解決實際問題.22、(1)30;2;(2)x=1;(3)當x=時,y最大=;【解析】

(1)如圖1中,作DH⊥BC于H,則四邊形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,當等邊三角形△EGF的高=時,點G在AD上,此時x=2;(2)根據勾股定理求出的長度,根據三角函數,求出∠ADB=30°,根據中點的定義得出根據等邊三角形的性質得到,即可求出x的值;

(3)圖2,圖3三種情形解決問題.①當2<x<3時,如圖2中,點E、F在線段BC上,△EFG與四邊形ABCD重疊部分為四邊形EFNM;②當3≤x<6時,如圖3中,點E在線段BC上,點F在射線BC上,重疊部分是△ECP;【詳解】(1)作DH⊥BC于H,則四邊形ABHD是矩形.∵AD=BH=3,BC=6,∴CH=BC﹣BH=3,在Rt△DHC中,CH=3,∴當等邊三角形△EGF的高等于時,點G在AD上,此時x=2,∠DCB=30°,故答案為30,2,(2)如圖∵AD∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90°在Rt△ABD中,∴∠ADB=30°∵G是BD的中點∴∵AD∥BC∴∠ADB=∠DBC=30°∵△GEF是等邊三角形,∴∠GFE=60°∴∠BGF=90°在Rt△BGF中,∴2x=2即x=1;(3)分兩種情況:當2<x<3,如圖2點E、點F在線段BC上△GEF與四邊形ABCD重疊部分為四邊形EFNM∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中,∴∴當時,最大當3≤x<6時,如圖3,點E在線段BC上,點F在線段BC的延長線上,△GEF與四邊形ABCD重疊部分為△ECP∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt△EPC中EC=6﹣x,對稱軸為當x<6時,y隨x的增大而減小∴當x=3時,最大綜上所述:當時,最大【點睛】屬于四邊形的綜合題,考查動點問題,等邊三角形的性質,三角函數,二次函數的最值等,綜合性比較強,難度較大.23、甲有錢,乙有錢.【解析】

設甲有錢x,乙有錢y,根據相等關系:甲的錢數+乙錢數的一半=50,甲的錢數的三分之二+乙的錢數=50列出二元一次方程組求解即可.【詳解】解:設甲有錢,乙有錢.由題意得:,解方程組得:,答:甲有錢,乙有錢.【點睛】本題考查了二元一次方程組的應用,讀懂題意正確的找出兩個相等關系是解決此題的關鍵.24、(1)k=11;(1)C(2,0).【解析】試題分析:(1)首先求出點A的坐標為(1,6),把點A(1,6)代入y=即可求出k的值;

(1)求出點B的坐標為B(4,2),設直線BC的解析式為y=2x+b,把點B(4,2)代入求出b=-9,得出直線BC的解析式為y=2x-9,求出當y=0時,x=2即可.試題解析:(1)∵點A在直線y=2x上,其橫坐標為1.∴y=2×1=6,∴A(1,6),把點A(1,6)代入,得,解得:k=11;(1)由(1)得:,∵點B為此反比例函數圖象上一點,其縱坐標為2,∴,解得x=

4,∴B(4,2),∵CB∥OA,∴設直線BC的解析式為y=2x+b,把點B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,∴直線BC的解析式為y=2x﹣9,當y=0時,2x﹣9=0,解得:x=2,∴C(2,0).25、(1);(2).【解析】

(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論