MATLAB控制系統(tǒng)仿真課件第七章_第1頁
MATLAB控制系統(tǒng)仿真課件第七章_第2頁
MATLAB控制系統(tǒng)仿真課件第七章_第3頁
MATLAB控制系統(tǒng)仿真課件第七章_第4頁
MATLAB控制系統(tǒng)仿真課件第七章_第5頁
已閱讀5頁,還剩84頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第七章控制系統(tǒng)的數(shù)學模型主要內(nèi)容控制系統(tǒng)的傳遞函數(shù)模型1系統(tǒng)傳遞函數(shù)模型簡述2傳遞函數(shù)的MATLAB相關(guān)函數(shù)3建立傳遞函數(shù)模型實例控制系統(tǒng)的零極點函數(shù)模型1零極點函數(shù)模型簡述2零極點函數(shù)的MATLAB相關(guān)函數(shù)3建立零極點函數(shù)模型實例控制系統(tǒng)的狀態(tài)空間函數(shù)模型1狀態(tài)空間函數(shù)模型簡述2狀態(tài)空間函數(shù)的MATLAB相關(guān)函數(shù)3建立狀態(tài)空間函數(shù)模型實例系統(tǒng)模型之間的轉(zhuǎn)換1系統(tǒng)模型轉(zhuǎn)換的MATLAB相關(guān)函數(shù)2系統(tǒng)模型之間轉(zhuǎn)換實例主要內(nèi)容方框圖模型的連接化簡1方框圖模型的連接化簡簡述2系統(tǒng)模型連接化簡的MATLAB相關(guān)函數(shù)3系統(tǒng)模型連接化簡實例Simulink圖形化系統(tǒng)建模實例主要內(nèi)容原理要點控制系統(tǒng)的數(shù)學模型是系統(tǒng)分析和設(shè)計的基礎(chǔ)。控制系統(tǒng)的數(shù)學模型在控制系統(tǒng)的研究中有著相當重要的地位,要對系統(tǒng)進行仿真處理,首先應當知道系統(tǒng)的數(shù)學模型,然后才可以對系統(tǒng)進行模擬。知道了系統(tǒng)的模型,才可以在此基礎(chǔ)上設(shè)計一個合適的控制器,使得系統(tǒng)響應達到預期的效果,從而符合工程實際的需要。原理要點獲得系統(tǒng)模型的兩種方法:一種是從已知的物理規(guī)律出發(fā),用數(shù)學推導的方法建立起數(shù)學模型;一種是由實驗數(shù)據(jù)擬合系統(tǒng)的數(shù)學模型。實際應用中,兩種方法各有其優(yōu)勢和應用場合。

在線性系統(tǒng)理論中,一般常用數(shù)學模型形式有:傳遞函數(shù)模型(系統(tǒng)的外部模型)狀態(tài)方程模型(系統(tǒng)的內(nèi)部模型)零極點增益模型部分分式模型等這些模型之間都有著內(nèi)在的聯(lián)系,可以相互進行轉(zhuǎn)換。原理要點實際工程里,要解決自動控制問題所需用的數(shù)學模型與該問題所給定的已知數(shù)學模型往往不一致;或者要解決問題最簡單而又最方便的方法所用到的數(shù)學模型與該問題所給定的已知數(shù)學模型不同,此時,就要對自控系統(tǒng)的數(shù)學模型進行轉(zhuǎn)換。

原理要點控制系統(tǒng)的傳遞函數(shù)模型系統(tǒng)傳遞函數(shù)模型簡述連續(xù)動態(tài)系統(tǒng)一般由微分方程來描述。而線性系統(tǒng)又是以線性常微分方程來描述的。設(shè)系統(tǒng)的輸入信號為u(t),且輸出信號為y(t),則系統(tǒng)的微分方程可寫成在零初始條件下,經(jīng)Laplace變換后,線性系統(tǒng)的傳遞函數(shù)模型:對線性定常系統(tǒng),式中s的系數(shù)均為常數(shù),且不等于零,這時系統(tǒng)在MATLAB中可以方便地由分子和分母系數(shù)構(gòu)成的兩個向量唯一地確定出來。系統(tǒng)傳遞函數(shù)模型簡述

注意:它們都是按s的降冪進行排列的。傳統(tǒng)函數(shù)可表示為其中ai,bi為常數(shù),這樣的系統(tǒng)又稱為線性時不變系統(tǒng)(LTI);系統(tǒng)的分母多項式稱為系統(tǒng)的特征多項式。對物理可實現(xiàn)系統(tǒng)來說,一定要滿足m≤n。系統(tǒng)傳遞函數(shù)模型簡述對于離散時間系統(tǒng),其單輸入單輸出系統(tǒng)的LTI系統(tǒng)差分方程為:對應的脈沖傳遞函數(shù)為:

系統(tǒng)傳遞函數(shù)模型簡述用不同向量分別表示分子和分母多項式,就可以利用控制系統(tǒng)工具箱的函數(shù)表示傳遞函數(shù)變量G:tf函數(shù)的具體用法見下表。傳遞函數(shù)的MATLAB相關(guān)函數(shù)SYS=TF(NUM,DEN)返回變量SYS為連續(xù)系統(tǒng)傳遞函數(shù)模型SYS=TF(NUM,DEN,TS)返回變量SYS為離散系統(tǒng)傳遞函數(shù)模型。TS為采樣周期,當TS=-1或者TS=[]時,表示系統(tǒng)采樣周期未定義S=TF('s')定義Laplace變換算子(Laplacevariable),以原形式輸入傳遞函數(shù)Z=TF('z',TS)定義Z變換算子及采樣時間TS,以原形式輸入傳遞函數(shù)傳遞函數(shù)的MATLAB相關(guān)函數(shù)PRINTSYS(NUM,DEN,'s')將系統(tǒng)傳遞函數(shù)以分式的形式打印出來,'s'表示傳遞函數(shù)變量PRINTSYS(NUM,DEN,'z')將系統(tǒng)傳遞函數(shù)以分式的形式打印出來,'z'表示傳遞函數(shù)變量GET(sys)可獲得傳遞函數(shù)模型對象sys的所有信息SET(sys,'Property',Value,...)為系統(tǒng)不同屬性設(shè)定值[NUM,DEN]=TFDATA(SYS,'v')以行向量的形式返回傳遞函數(shù)分子分母多項式C=CONV(A,B)多項式A,B以系數(shù)行向量表示,進行相乘。結(jié)果C仍以系數(shù)行向量表示傳遞函數(shù)的MATLAB相關(guān)函數(shù)此外,系統(tǒng)傳遞函數(shù)也可以由其它形式的傳遞函數(shù)轉(zhuǎn)換而來。這在系統(tǒng)模型之間的轉(zhuǎn)換中將詳細介紹。傳遞函數(shù)的MATLAB相關(guān)函數(shù)建立傳遞函數(shù)模型實例例:將傳遞函數(shù)模型輸入到MATLAB工作空間中。num=[1215];den=[11664192];G=tf(num,den)s=tf('s');G=(12*s+15)/(s^3+16*s^2+64*s+192)例:已知傳遞函數(shù)模型,將其輸入到MATLAB工作空間中。num=conv(10,[2,1]);den=conv([100],[1713]);G=tf(num,den)s=tf('s');G=10*(2*s+1)/s^2/(s^2+7*s+13)例:設(shè)置傳遞函數(shù)模型時間延遲常數(shù)為τ=4,即系統(tǒng)模型為在已有MATLAB模型基礎(chǔ)上,設(shè)置時間延遲常數(shù)。s=tf('s');G=10*(2*s+1)/s^2/(s^2+7*s+13)set(G,‘ioDelay’,4)方法1GG.ioDelay=4方法2例:已知系統(tǒng)傳遞函數(shù)模型為提取系統(tǒng)的分子和分母多項式。s=tf('s');G=(s^2+2*s+3)/(s^3+3*s+4)/(s+2)[num1,den1]=tfdata(G,‘v’)方法1get(G)方法2num2=G.num{1,1}den2=G.den{1,1}

控制系統(tǒng)零極點函數(shù)模型零極點函數(shù)模型簡述零極點模型實際上是傳遞函數(shù)模型的另一種表現(xiàn)形式。其原理是分別對原系統(tǒng)傳遞函數(shù)的分子、分母進行分解因式處理,以獲得系統(tǒng)的零點和極點的表示形式。

其中,K為系統(tǒng)增益,zi為零點,pj為極點。顯然,對實系數(shù)的傳遞函數(shù)模型來說,系統(tǒng)的零極點或者為實數(shù),或者以共軛復數(shù)的形式出現(xiàn)。離散系統(tǒng)的傳遞函數(shù)也可表示為零極點模式:零極點函數(shù)模型簡述零極點函數(shù)的MATLAB相關(guān)函數(shù)在MATLAB中零極點增益模型用[z,p,K]矢量組表示。即:調(diào)用zpk(

)函數(shù)就可以輸入這個零極點模型了。zpk函數(shù)的具體用法sys=zpk(z,p,k)得到連續(xù)系統(tǒng)的零極點增益模型sys=zpk(z,p,k,Ts)得到連續(xù)系統(tǒng)的零極點增益模型,采樣時間為Tss=zpk('s')得到Laplace算子,按原格式輸入系統(tǒng),得到系統(tǒng)zpk模型z=zpk('z',Ts)得到Z變換算子和采樣時間Ts,按原格式輸入系統(tǒng),得到系統(tǒng)zpk模型與零極點增益模型相關(guān)的函數(shù)[Z,P,K]=ZPKDATA(SYS,'v')得到系統(tǒng)的零極點和增益,參數(shù)'v'表示以向量形式表示[p,z]=pzmap(sys)返回系統(tǒng)零極點pzmap(sys)得到系統(tǒng)零極點分布圖建立零極點函數(shù)模型實例例:將零極點模型輸入MATLAB工作空間。

z1=[-5;-5];p1=[-1;-2;-2-2*j;-2+2*j];k=4;G1=zpk(z1,p1,k)

方法1s=zpk(‘s’);

方法2G2=4*(s+5)^2/(s+1)/(s+2)/(s^2+4*s+8)例:已知一系統(tǒng)的傳遞函數(shù)求取其零極點向量和增益值,并得到系統(tǒng)的零極點增益模型。

建立零極點函數(shù)模型實例Gtf=tf([728],[41242])[z,p,k]=zpkdata(Gtf,'v')Gzpk=zpk(z,p,k)[p1,z1]=pzmap(Gtf)例:已知一系統(tǒng)的傳遞函數(shù)求其零極點及增益,并繪制系統(tǒng)零極點分布圖。

建立零極點函數(shù)模型實例num=[1411];den=conv([163],[120]);G=tf(num,den)[z,p,k]=zpkdata(G,'v')pzmap(G)

控制系統(tǒng)狀態(tài)空間函數(shù)模型狀態(tài)空間函數(shù)模型簡述系統(tǒng)動態(tài)信息的集合稱為狀態(tài),在表征系統(tǒng)信息的所有變量中,能夠全部描述系統(tǒng)運行的最少數(shù)目的一組獨立變量稱為系統(tǒng)的狀態(tài)變量,其選取不是惟一的。以n維狀態(tài)變量為基所構(gòu)成的n維空間稱為n維狀態(tài)空間。狀態(tài)向量在狀態(tài)空間中隨時間t變化的軌跡稱為狀態(tài)軌跡。由狀態(tài)向量所表征的模型便是狀態(tài)空間模型。基于系統(tǒng)的內(nèi)部的狀態(tài)變量的,所以又往往稱為系統(tǒng)的內(nèi)部描述方法。和傳遞函數(shù)模型不同,狀態(tài)方程可以描述更廣的一類控制系統(tǒng)模型,包括非線性系統(tǒng)。具有n個狀態(tài)、m個輸入和p個輸出的線性時不變系統(tǒng),用矩陣符號表示的狀態(tài)空間模型是:狀態(tài)空間函數(shù)模型簡述其中:狀態(tài)向量x(t)是n維,輸入向量u(t)是m維,輸出向量y(t)是p維;狀態(tài)矩陣A是n*n維,輸入矩陣B是n*m維,輸出矩陣C是p*n維,前饋矩陣D是p*m維;對于一個時不變系統(tǒng),A,B,C,D都是常數(shù)矩陣。狀態(tài)空間函數(shù)的

MATLAB相關(guān)函數(shù)sys=ss(A,B,C,D)由A,B,C,D矩陣直接得到連續(xù)系統(tǒng)狀態(tài)空間模型sys=ss(A,B,C,D,Ts)由A,B,C,D矩陣和采樣時間Ts直接得到離散系統(tǒng)狀態(tài)空間模型[A,B,C,D]=ssdata(sys)得到連續(xù)系統(tǒng)參數(shù)[A,B,C,D,Ts]=ssdata(sys)得到離散系統(tǒng)參數(shù)

建立狀態(tài)空間函數(shù)模型實例例:將以下系統(tǒng)的狀態(tài)方程模型輸入到MATLAB工作空間中。A=[654;100;010];B=[100]';C=[067];D=[0];G=ss(A,B,C,D)例:已知系統(tǒng)求系統(tǒng)參數(shù)。A=[01;-3-4];B=[01]';C=[52];D=1;Gss=ss(A,B,C,D)[aa,bb,cc,dd]=ssdata(Gss)get(Gss)Gss.a線性離散時間

系統(tǒng)的數(shù)學模型單變量系統(tǒng):差分方程取代微分方程離散傳遞函數(shù)的matlab模型離散狀態(tài)方程的matlab模型離散傳遞函數(shù)模型數(shù)學表示(Z變換代替Laplace變換)MATLAB表示(采樣周期)算子輸入方法:例

離散傳遞函數(shù),采樣周期MATLAB輸入方法另一種輸入方法z=tf('z',0.1);H=(6*z^2-0.6*z-0.12).../(z^4-z^3+0.25*z^2+0.25*z-0.125)n=[6-0.6-0.12];m=[1-10.250.25-0.25];h=tf(n,m,'Ts',0.1)

離散延遲系統(tǒng)與輸入數(shù)學模型延遲為采樣周期的整數(shù)倍MATLAB輸入方法濾波器型描述方法濾波器型離散模型分子、分母除以記,則MATLAB表示方法例離散狀態(tài)方程模型數(shù)學形式注意兼容性MATLAB表示方法離散延遲系統(tǒng)的狀態(tài)方程數(shù)學模型MATLAB表示方法系統(tǒng)模型之間的轉(zhuǎn)換系統(tǒng)模型轉(zhuǎn)換的

MATLAB相關(guān)函數(shù)系統(tǒng)的線性時不變(LTI)模型有傳遞函數(shù)(tf)模型、零極點增益(zpk)模型和狀態(tài)空間(ss)模型,它們之間可以相互轉(zhuǎn)換。轉(zhuǎn)換形式如圖所示。tfsys=tf(sys)將其它類型的模型轉(zhuǎn)換為多項式傳遞函數(shù)模型zsys=zpk(sys)將其它類型的模型轉(zhuǎn)換為zpk模型sys_ss=ss(sys)將其它類型的模型轉(zhuǎn)換為ss模型把其它類型的模型轉(zhuǎn)換為函數(shù)表示的模型自身[A,B,C,D]=tf2ss(num,den)tf模型參數(shù)轉(zhuǎn)換為ss模型參數(shù)[num,den]=ss2tf(A,B,C,D,iu)ss模型參數(shù)轉(zhuǎn)換為tf模型參數(shù),iu表示對應第i路傳遞函數(shù)[num,den]=ss2tf(A,B,C,D,iu)[z,p,k]=tf2zp(num,den)tf模型參數(shù)轉(zhuǎn)換為zpk模型參數(shù)[num,den]=zp2tf(z,p,k)zpk模型參數(shù)轉(zhuǎn)換為tf模型參數(shù)[A,B,C,D]=zp2ss(z,p,k)zpk模型參數(shù)轉(zhuǎn)換為ss模型參數(shù)[z,p,k]=ss2zp(A,B,C,D,i)ss模型參數(shù)轉(zhuǎn)換為zpk模型參數(shù),iu表示對應第i路傳遞函數(shù)將本類型傳遞函數(shù)參數(shù)轉(zhuǎn)換為其它類型傳遞函數(shù)參數(shù)系統(tǒng)模型之間轉(zhuǎn)換實例例:已知系統(tǒng)傳遞函數(shù)模型試求其零極點模型及狀態(tài)空間模型。

clearnum=[5];den=conv([12],[121]);Gtf=tf(num,den)Gzpk=zpk(Gtf)Gss=ss(Gtf)例:已知一系統(tǒng)的零極點模型求其tf模型及狀態(tài)空間模型。

z=[-2-4]';p=[-1-3]';k=5;Gzpk=zpk(z,p,k)[a,b,c,d]=zp2ss(z,p,k)[num,den]=zp2tf(z,p,k)Gtf=zp2tf(z,p,k)例:將雙輸入單輸出的系統(tǒng)模型轉(zhuǎn)換為多項式傳遞函數(shù)模型。系統(tǒng)模型之間轉(zhuǎn)換實例a=[01;-2-3];%方法1b=[10;01];c=[10];d=[00];[num,den]=ss2tf(a,b,c,d,1)[num2,den2]=ss2tf(a,b,c,d,2)Gss=ss(a,b,c,d);%方法2Gtf=tf(Gss)例:系統(tǒng)傳遞函數(shù)為將其轉(zhuǎn)換為狀態(tài)空間模型。

num=[12];den=[112];[a,b,c,d]=tf2ss(num,den)Gss=ss(tf(num,den))連續(xù)系統(tǒng)和離散系統(tǒng)之間的轉(zhuǎn)換sysd=c2d(sysc,Ts) %將連續(xù)系統(tǒng)轉(zhuǎn)換為采樣周期為Ts的離散系統(tǒng)sysd=c2d(sysc,Ts,'method') %指定連續(xù)系統(tǒng)的離散化方法[sysd,G]=c2d(sysc,Ts,'method')%對于SS模型,求得初始條件的轉(zhuǎn)換陣G[Ad,Bd,Cd,Dd]=c2dm(A,B,C,D,Ts,'method')%連續(xù)SS模型的離散化調(diào)用格式sysc=d2c(sysd) %將離散系統(tǒng)轉(zhuǎn)換為連續(xù)系統(tǒng)sysc=d2c(sysd,method) %指定離散系統(tǒng)的連續(xù)化方法method[Ac,Bc,Cc,Dc]=d2cm(A,B,C,D,Ts,'method') %用于離散SS模型的連續(xù)化sysd1=d2d(sysd,Ts)%改變采樣周期,生成新的離散系統(tǒng)sysc表示連續(xù)系統(tǒng)的數(shù)學模型,sysd表示離散系統(tǒng)的數(shù)學模型。method為轉(zhuǎn)換方法其取值和含義為:'zoh' 零階保持器法,這是默認的轉(zhuǎn)換方法。'foh' 一階保持器法'imp' 沖擊響應不變法'tustin' 雙線性變換法'prewarp' 預扭曲的雙線性變換法'matched' 零極點映射匹配法(僅用于SISO系統(tǒng))說明:例系統(tǒng)的被控對象傳遞函數(shù)為:采樣周期Ts=0.1秒,試將其進行離散化處理。num=10;den=conv([1,2],[1,5]);ts=0.1;sysc=tf(num,den);sysd=c2d(sysc,ts)例

離散系統(tǒng)的脈沖傳遞函數(shù)為采樣周期Ts=0.1,采樣周期改變?yōu)門s=0.25s,試求采樣周期改變前后系統(tǒng)的單位階躍響應。h1=tf([10.4],[1-0.7],0.1);h2=d2d(h1,0.25);step(h1,'-.',h2,'-')h1=tf([10.4],[1-0.7],0.1);h0=d2c(h1)h2=c2d(h0,0.25);step(h1,'-.',h2,'-')

方框圖模型的連接化簡方框圖模型的連接化簡簡述在實際應用中,整個控制系統(tǒng)由受控對象和控制裝置組成的,有多個環(huán)節(jié)。由多個單一的模型組合而成。每個單一的模型都可以用一組微分方程或傳遞函數(shù)來描述。基于模型不同的連接和互連信息,合成后的模型有不同的結(jié)果。模型間連接主要有串聯(lián)連接、并聯(lián)連接、串并聯(lián)連接和反饋連接等。對系統(tǒng)的不同連接情況,可以進行模型的化簡。串聯(lián)連接的化簡

并聯(lián)連接的化簡

G(s)=Gl(s)+G2(s)反饋連接的化簡(a)正反饋連接(b)負反饋連接對于如圖的正反饋連接負反饋連接反饋連接的化簡方框圖的其它變換化簡(a)綜合點后移等效變換(b)綜合點前移等效變換方框圖的其它變換化簡(c)分支點后移等效變換方框圖的其它變換化簡(d)分支點前移等效變換方框圖的其它變換化簡系統(tǒng)模型連接化簡函數(shù)

sys=parallel(sys1,sys2)sys=parallel(sys1,sys2,inp1,inp2,out1,out2)并聯(lián)兩個系統(tǒng),等效于sys=sys1+sys2對MIMO系統(tǒng),表示sys1的輸入inp1與sys2的輸入inp2相連,sys1輸出out1與sys2輸出out2相連sys=series(sys1,sys2)串聯(lián)兩個系統(tǒng),等效于sys=sys2*sys1sys=feedback(sys1,sys2)兩系統(tǒng)負反饋連接,默認格式sys=feedback(sys1,sys2,sign)sign=-1表示負反饋,sign=1表示正反饋。等效于sys=sys1/(1±sys1*sys2)sys=feedback(sys1,sys2,feedin,feedout,sign)對MIMO系統(tǒng),部分反饋連接。sys1的指定輸出feedout連接到sys2的輸入,而sys2的輸出連接到sys1的指定輸入feedin,最終實現(xiàn)的反饋系統(tǒng)與sys1具有相同的輸入、輸入端。sign標識正負反饋,同上系統(tǒng)模型連接化簡函數(shù)

系統(tǒng)模型連接化簡實例例:已知系統(tǒng)

求G1(s)和G2(s)分別進行串聯(lián)、并聯(lián)和反饋連接后的系統(tǒng)模型。

num1=1;den1=[1523];num2=1;den2=[14];G1=tf(num1,den1);G2=tf(num2,den2);Gs=G2*G1Gs1=series(G1,G2)Gp=G1+G2Gp1=parallel(G1,G2)Gf=feedback(G1,G2)Gf1=G1/(1+G1*G2)Gf2=minreal(Gf1)注:對于反饋連接,雖然運算式與feedback函數(shù)等效,但得到的系統(tǒng)階次可能高于實際系統(tǒng)階次,需通過minreal函數(shù)進一步求其最小實現(xiàn)。較早版本中可用cloop函數(shù)來求系統(tǒng)反饋連接,這一函數(shù)在新版本的MATLAB中會提示已過時,并建議用feedback代替之。系統(tǒng)模型連接化簡實例例:化簡如圖系統(tǒng),求系統(tǒng)的傳遞函數(shù)。

clearG1=tf(1,[11]);G2=tf(1,[341]);Gp=G1+G2;G3=tf(1,[10]);Gs=series(G3,Gp);Gc=Gs/(1+Gs)Gc1=minreal(Gc)例已知前向環(huán)節(jié)和反饋環(huán)節(jié)的狀態(tài)空間表達式的系數(shù)陣分別為試將前向環(huán)節(jié)的輸入1和輸出2與反饋環(huán)節(jié)構(gòu)成負反饋系統(tǒng)。A1=[1,0;0,1];B1=[1,1;0,1];C1=[1,3;2,0];D1=[1,0;2,5];sys1=ss(A1,B1,C1,D1);A2=[-2,0;1,0];B2=[1,0]';C2=[0,1];D2=0;sys2=ss(A2,B2,C2,D2);feedin=1;feedout=2;sign=-1;sys=feedback(sys1,sys2,feedin,feedout,sign)例

典型反饋控制系統(tǒng)結(jié)構(gòu)如圖所示其中求系統(tǒng)的閉環(huán)傳遞函數(shù)。G=tf(4,[1,2,3,4]);Gc=tf([1,-3],[1,3]);H=tf(1,[0.01,1]);G_o=Gc*G; G_c=feedback(G_o,H)調(diào)用格式:sys=append(sys1,sys2,...,sysN)系統(tǒng)模型的擴展功能:將子系統(tǒng)sys1,sys2,...,sysN的所有輸入作為系統(tǒng)的輸入,所有輸出作為系統(tǒng)輸出,且各子系統(tǒng)間沒有信號連接,從而擴展為一個系統(tǒng)。傳遞函數(shù)模型擴展狀態(tài)空間子系統(tǒng)的擴展調(diào)用格式:sysc=connect(sys,Q,inputs,outputs)

功能:connect函數(shù)的功能是將多個子系統(tǒng)按照一定的連接方式構(gòu)成一個系統(tǒng)。sys是待連接的子系統(tǒng)被append函數(shù)擴展后的系統(tǒng)。Q矩陣聲明了子系統(tǒng)的連接方式。Q矩陣的行向量聲明了sys輸入信號的連接方式,每個行向量的第1個元素為sys系統(tǒng)的輸入端口號,其他元素為與該輸入信號相連接的sys端口號。Inputs聲明了整個系統(tǒng)的輸入信號是由sys系統(tǒng)的哪些輸入端口號構(gòu)成。Outputs聲明了整個系統(tǒng)的輸出信號是由sys系統(tǒng)的哪些輸出端口號構(gòu)成。系統(tǒng)模型的結(jié)構(gòu)圖連接例

系統(tǒng)的結(jié)構(gòu)圖如圖所示,試求取整個系統(tǒng)的狀態(tài)空間模型。其中,子系統(tǒng)sys2的狀態(tài)空間模型數(shù)據(jù)為A=[-9.0,17.7;-1.69,3.21];B=[-0.51,0.53;-0.002-1.85];C=[-3.29,2.45;-13.5,18];D=[-0.55,-0.14;-0.65,0.3];sys1=tf(10,[15],'inputname','uc');sys2=ss(A,B,C,D,'inputname',{'u1''u2'},'outputname',{'y1''y2'});sys3=zpk(-1,-2,2);sys=append(sys1,sys2,sys3);Q=[3,1,-4;4,3,0];outputs=[2,3];inputs=[1,2];sysc=connect(sys,Q,inputs,outputs)模型分析函數(shù)模型的特征分析函數(shù)名函數(shù)功能class返回模型的類型名稱,'tf','zpk','ss'或者'frd'hasdelay如果LTI模型有任何類型的滯后時間,則返回1isa判斷LTI模型是否是指定的類型isct判斷模型是否為連續(xù)系統(tǒng)模型isdt判斷模型是否為離散系統(tǒng)模型isempty判斷LTI模型是否為空isproper判斷模型是否為正則系統(tǒng)(傳遞函數(shù)分母階次大于等于分子的階次)issiso判斷模型是否為MIMO系統(tǒng)ndims返回LTI數(shù)組的維數(shù)reshape改變LTI數(shù)組的形狀size返回輸入輸出狀態(tài)的維數(shù)

模型的動態(tài)分析函數(shù)名函數(shù)功能cover計算輸出的協(xié)方差和狀態(tài)的協(xié)方差damp求取系統(tǒng)特征根的無阻尼自振頻率和阻尼比dcgain返回系統(tǒng)的低頻增益dsort離散系統(tǒng)的極點按幅值排序esort連續(xù)系統(tǒng)的極點按實部排序normLTI模型的范數(shù)pole,eig求系統(tǒng)的極點pzmap求取系統(tǒng)的零極點分布zeroLIT系統(tǒng)的傳輸零點狀態(tài)空間的實現(xiàn)函數(shù)名函數(shù)功能canon約當標準型的實現(xiàn)ctrb能控矩陣ctrbf能控標準型的實現(xiàn)gram計算系統(tǒng)的能控Gram矩陣和能觀Gram矩陣obsv能觀矩陣obsvf能觀標準型的實現(xiàn)ssbal基于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論