




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.若代數式的值為零,則實數x的值為()A.x=0 B.x≠0 C.x=3 D.x≠32.-2的倒數是()A.-2 B. C. D.23.對于實數x,我們規定[x]表示不大于x的最大整數,如[4]=4,[]=1,[﹣2.5]=﹣3.現對82進行如下操作:82[]=9[]=3[]=1,這樣對82只需進行3次操作后變為1,類似地,對121只需進行多少次操作后變為1()A.1 B.2 C.3 D.44.如圖,二次函數y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=1,且OA=OC.則下列結論:①abc>0;②9a+3b+c>0;③c>﹣1;④關于x的方程ax1+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結論有()A.1個 B.3個 C.4個 D.5個5.已知二次函數(為常數),當自變量的值滿足時,與其對應的函數值的最大值為-1,則的值為()A.3或6 B.1或6 C.1或3 D.4或66.下面說法正確的個數有()①如果三角形三個內角的比是1∶2∶3,那么這個三角形是直角三角形;②如果三角形的一個外角等于與它相鄰的一個內角,則這么三角形是直角三角形;③如果一個三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形;④如果∠A=∠B=12⑤若三角形的一個內角等于另兩個內角之差,那么這個三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,則此三角形是直角三角形.A.3個B.4個C.5個D.6個7.下列二次根式,最簡二次根式是()A.8 B.12 C.5 D.8.下列運算正確的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a3+a2=2a59.如圖,已知△ADE是△ABC繞點A逆時針旋轉所得,其中點D在射線AC上,設旋轉角為α,直線BC與直線DE交于點F,那么下列結論不正確的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α10.下列手機手勢解鎖圖案中,是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知,如圖,正方形ABCD的邊長是8,M在DC上,且DM=2,N是AC邊上的一動點,則DN+MN的最小值是_____.12.如圖,⊙O的直徑CD垂直于AB,∠AOC=48°,則∠BDC=度.13.如圖,正方形內的陰影部分是由四個直角邊長都是1和3的直角三角形組成的,假設可以在正方形內部隨意取點,那么這個點取在陰影部分的概率為.14.如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,將△ABC折疊,使點B恰好落在邊AC上,與點B′重合,AE為折痕,則EB′=_______.15.如圖,在平面直角坐標系中有一正方形AOBC,反比例函數經過正方形AOBC對角線的交點,半徑為()的圓內切于△ABC,則k的值為________.16.如圖,邊長為6cm的正三角形內接于⊙O,則陰影部分的面積為(結果保留π)_____.三、解答題(共8題,共72分)17.(8分)已知:如圖,點E是正方形ABCD的邊CD上一點,點F是CB的延長線上一點,且DE=BF.求證:EA⊥AF.18.(8分)先化簡,再求值:,且x為滿足﹣3<x<2的整數.19.(8分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.從中任意摸出1個球,恰好摸到紅球的概率是;先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.20.(8分)如圖,已知⊙O,請用尺規做⊙O的內接正四邊形ABCD,(保留作圖痕跡,不寫做法)21.(8分)計算:÷+8×2﹣1﹣(+1)0+2?sin60°.22.(10分)已知:如圖,在菱形中,點,,分別為,,的中點,連接,,,.求證:;當與滿足什么關系時,四邊形是正方形?請說明理由.23.(12分)已知圓O的半徑長為2,點A、B、C為圓O上三點,弦BC=AO,點D為BC的中點,(1)如圖,連接AC、OD,設∠OAC=α,請用α表示∠AOD;(2)如圖,當點B為的中點時,求點A、D之間的距離:(3)如果AD的延長線與圓O交于點E,以O為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.24.平面直角坐標系xOy中,橫坐標為a的點A在反比例函數y1═(x>0)的圖象上,點A′與點A關于點O對稱,一次函數y2=mx+n的圖象經過點A′.(1)設a=2,點B(4,2)在函數y1、y2的圖象上.①分別求函數y1、y2的表達式;②直接寫出使y1>y2>0成立的x的范圍;(2)如圖①,設函數y1、y2的圖象相交于點B,點B的橫坐標為3a,△AA'B的面積為16,求k的值;(3)設m=,如圖②,過點A作AD⊥x軸,與函數y2的圖象相交于點D,以AD為一邊向右側作正方形ADEF,試說明函數y2的圖象與線段EF的交點P一定在函數y1的圖象上.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據分子為零,且分母不為零解答即可.【詳解】解:∵代數式的值為零,∴x=0,此時分母x-3≠0,符合題意.故選A.【點睛】本題考查了分式的值為零的條件.若分式的值為零,需同時具備兩個條件:①分子的值為0,②分母的值不為0,這兩個條件缺一不可.2、B【解析】
根據倒數的定義求解.【詳解】-2的倒數是-故選B【點睛】本題難度較低,主要考查學生對倒數相反數等知識點的掌握3、C【解析】分析:[x]表示不大于x的最大整數,依據題目中提供的操作進行計算即可.詳解:121∴對121只需進行3次操作后變為1.故選C.點睛:本題是一道關于無理數的題目,需要結合定義的新運算和無理數的估算進行求解.4、D【解析】
根據拋物線的圖象與系數的關系即可求出答案.【詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點可知:c<0,由拋物線的對稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當x=﹣c時,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設關于x的方程ax1+bx+c=0(a≠0)有一個根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點分布在對稱軸的兩側,∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對稱軸的距離小于x1到對稱軸的距離,∴y1>y1,故⑤正確.故選D.【點睛】本題考查的是二次函數圖象與系數的關系,二次函數y=ax1+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.本題屬于中等題型.5、B【解析】分析:分h<2、2≤h≤5和h>5三種情況考慮:當h<2時,根據二次函數的性質可得出關于h的一元二次方程,解之即可得出結論;當2≤h≤5時,由此時函數的最大值為0與題意不符,可得出該情況不存在;當h>5時,根據二次函數的性質可得出關于h的一元二次方程,解之即可得出結論.綜上即可得出結論.詳解:如圖,當h<2時,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);當2≤h≤5時,y=-(x-h)2的最大值為0,不符合題意;當h>5時,有-(5-h)2=-1,解得:h3=4(舍去),h4=1.綜上所述:h的值為1或1.故選B.點睛:本題考查了二次函數的最值以及二次函數的性質,分h<2、2≤h≤5和h>5三種情況求出h值是解題的關鍵.6、C【解析】試題分析:①∵三角形三個內角的比是1:2:3,∴設三角形的三個內角分別為x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小題正確;②∵三角形的一個外角與它相鄰的一個內角的和是180°,∴若三角形的一個外角等于與它相鄰的一個內角,則此三角形是直角三角形,故本小題正確;③∵直角三角形的三條高的交點恰好是三角形的一個頂點,∴若三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形,故本小題正確;④∵∠A=∠B=12∴設∠A=∠B=x,則∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小題正確;⑤∵三角形的一個外角等于與它不相鄰的兩內角之和,三角形的一個內角等于另兩個內角之差,∴三角形一個內角也等于另外兩個內角的和,∴這個三角形中有一個內角和它相鄰的外角是相等的,且外角與它相鄰的內角互補,∴有一個內角一定是90°,故這個三角形是直角三角形,故本小題正確;⑥∵三角形的一個外角等于與它不相鄰的兩內角之和,又一個內角也等于另外兩個內角的和,由此可知這個三角形中有一個內角和它相鄰的外角是相等的,且外角與它相鄰的內角互補,∴有一個內角一定是90°,故這個三角形是直角三角形,故本小題正確.故選D.考點:1.三角形內角和定理;2.三角形的外角性質.7、C【解析】
檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、被開方數含開的盡的因數,故A不符合題意;B、被開方數含分母,故B不符合題意;C、被開方數不含分母;被開方數不含能開得盡方的因數或因式,故C符合題意;D、被開方數含能開得盡方的因數或因式,故D不符合題意.故選C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數不含分母;被開方數不含能開得盡方的因數或因式.8、B【解析】
根據去括號法則,積的乘方的性質,完全平方公式,合并同類項法則,對各選項分析判斷后利用排除法求解.【詳解】解:A、因為﹣(a﹣1)=﹣a+1,故本選項錯誤;B、(﹣2a3)2=4a6,正確;C、因為(a﹣b)2=a2﹣2ab+b2,故本選項錯誤;D、因為a3與a2不是同類項,而且是加法,不能運算,故本選項錯誤.故選B.【點睛】本題考查了合并同類項,積的乘方,完全平方公式,理清指數的變化是解題的關鍵.9、D【解析】
利用旋轉不變性即可解決問題.【詳解】∵△DAE是由△BAC旋轉得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正確,
故選D.【點睛】本題考查旋轉的性質,解題的關鍵是熟練掌握旋轉不變性解決問題,屬于中考常考題型.10、D【解析】
根據軸對稱圖形與中心對稱圖形的定義進行判斷.【詳解】A.既不是軸對稱圖形,也不是中心對稱圖形,所以A錯誤;B.既不是軸對稱圖形,也不是中心對稱圖形,所以B錯誤;C.是中心對稱圖形,不是軸對稱圖形,所以C錯誤;D.是軸對稱圖形,不是中心對稱圖形,所以D正確.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握定義是本題解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉化DN,MN的值,從而找出其最小值求解.解答:解:如圖,連接BM,∵點B和點D關于直線AC對稱,∴NB=ND,則BM就是DN+MN的最小值,∵正方形ABCD的邊長是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故答案為1.點評:考查正方形的性質和軸對稱及勾股定理等知識的綜合應用.12、20【解析】解:連接OB,∵⊙O的直徑CD垂直于AB,∴=,∴∠BOC=∠AOC=40°,∴∠BDC=∠AOC=×40°=20°13、.【解析】試題分析:此題是求陰影部分的面積占正方形面積的幾分之幾,即為所求概率.陰影部分的面積為:3×1÷2×4=6,因為正方形對角線形成4個等腰直角三角形,所以邊長是=,∴這個點取在陰影部分的概率為:6÷=6÷18=.考點:求隨機事件的概率.14、1.5【解析】在Rt△ABC中,,∵將△ABC折疊得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.設B′E=BE=x,則CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得.15、1【解析】試題解析:設正方形對角線交點為D,過點D作DM⊥AO于點M,DN⊥BO于點N;設圓心為Q,切點為H、E,連接QH、QE.∵在正方形AOBC中,反比例函數y=經過正方形AOBC對角線的交點,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四邊形HQEC是正方形,∵半徑為(1-2)的圓內切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-2)2,∴QC2=18-32=(1-1)2,∴QC=1-1,∴CD=1-1+(1-2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【點睛】此題主要考查了正方形的性質以及三角形內切圓的性質以及待定系數法求反比例函數解析式,根據已知求出CD的長度,進而得出DN×NO=1是解決問題的關鍵.16、(4π﹣3)cm1【解析】
連接OB、OC,作OH⊥BC于H,根據圓周角定理可知∠BOC的度數,根據等邊三角形的性質可求出OB、OH的長度,利用陰影面積=S扇形OBC-S△OBC即可得答案【詳解】:連接OB、OC,作OH⊥BC于H,則BH=HC=BC=3,∵△ABC為等邊三角形,∴∠A=60°,由圓周角定理得,∠BOC=1∠A=110°,∵OB=OC,∴∠OBC=30°,∴OB==1,OH=,∴陰影部分的面積=﹣×6×=4π﹣3,故答案為:(4π﹣3)cm1.【點睛】本題主要考查圓周角定理及等邊三角形的性質,在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;熟練掌握圓周角定理是解題關鍵.三、解答題(共8題,共72分)17、見解析【解析】
根據條件可以得出AD=AB,∠ABF=∠ADE=90°,從而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出結論.【詳解】證明:∵四邊形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF和△DAE中,,∴△BAF≌△DAE(SAS),∴∠FAB=∠EAD,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴EA⊥AF.18、-5【解析】
根據分式的運算法則即可求出答案.【詳解】原式=[+]÷=(+)?x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【點睛】本題考查分式的運算法則,解題的關鍵是熟練運用分式的運算法則,本題屬于基礎題型.19、(1)(2)【解析】試題分析:(1)因為總共有4個球,紅球有2個,因此可直接求得紅球的概率;(2)根據題意,列表表示小球摸出的情況,然后找到共12種可能,而兩次都是紅球的情況有2種,因此可求概率.試題解析:解:(1).(2)用表格列出所有可能的結果:第二次
第一次
紅球1
紅球2
白球
黑球
紅球1
(紅球1,紅球2)
(紅球1,白球)
(紅球1,黑球)
紅球2
(紅球2,紅球1)
(紅球2,白球)
(紅球2,黑球)
白球
(白球,紅球1)
(白球,紅球2)
(白球,黑球)
黑球
(黑球,紅球1)
(黑球,紅球2)
(黑球,白球)
由表格可知,共有12種可能出現的結果,并且它們都是等可能的,其中“兩次都摸到紅球”有2種可能.∴P(兩次都摸到紅球)==.考點:概率統計20、見解析【解析】
根據內接正四邊形的作圖方法畫出圖,保留作圖痕跡即可.【詳解】任作一條直徑,再作該直徑的中垂線,順次連接圓上的四點即可.【點睛】此題重點考察學生對圓內接正四邊形作圖的應用,掌握圓內接正四邊形的作圖方法是解題的關鍵.21、6+.【解析】
利用負整數指數冪、零指數冪的意義和特殊角的三角函數值進行計算.【詳解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.22、見解析【解析】
(1)由菱形的性質得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位線定理證出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)證明△BCE≌△DCF即可;
(2)由(1)得:AE=OE=OF=AF,證出四邊形AEOF是菱形,再證出∠AEO=90°,四邊形AEOF是正方形.【詳解】(1)證明:∵四邊形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵點E,O,F分別為AB,AC,AD的中點,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)當AB⊥BC時,四邊形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四邊形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四邊形AEOF是正方形.【點睛】本題考查了全等三角形、菱形、正方形的性質,解題的關鍵是熟練的掌握菱形、正方形、全等三角形的性質.23、(1);(2);(3)【解析】
(1)連接OB、OC,可證△OBC是等邊三角形,根據垂徑定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的內角和定理即可表示出∠AOD的值.(2)連接OB、OC,可證△OBC是等邊三角形,根據垂徑定理可得∠DOB等于30°,因為點D為BC的中點,則∠AOB=∠BOC=60°,所以∠AOD等于90°,根據OA=OB=2,在直角三角形中用三角函數及勾股定理即可求得OD、AD的長.(3)分兩種情況討論:兩圓外切,兩圓內切.先根據兩圓相切時圓心距與兩圓半徑的關系,求出AD的長,再過O點作AE的垂線,利用勾股定理列出方程即可求解.【詳解】(1)如圖1:連接OB、OC.∵BC=AO∴OB=OC=BC∴△OBC是等邊三角形∴∠BOC=60°∵點D是BC的中點∴∠BOD=∵OA=OC∴=α∴∠AOD=180°-α-α-=150°-2α(2)如圖2:連接OB、OC、OD.由(1)可得:△OBC是等邊三角形,∠BOD=∵OB=2,∴OD=OB?cos=∵B為的中點,∴∠AOB=∠BOC=60
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網絡工程師的未來發展方向試題及答案
- 西方國家政治外交中的人權問題試題及答案
- 經濟政策與科技創新試題及答案
- 西方選舉制度的演變試題及答案
- 深度分析西方國家的政治演變試題及答案
- 深入解析四級軟件測試工程師典型試題及答案
- 數據庫設計在2025年軟件設計師考試中的試題及答案
- 機電工程考試難點透析與試題及答案
- 公共政策對未來就業的影響試題及答案
- 2025年仿制藥一致性評價對醫藥市場政策環境分析報告
- 2025-2030中國數字PCR(DPCR)和QPCR行業市場現狀供需分析及投資評估規劃分析研究報告
- 相機全景拍攝與拼接技術考核試卷
- 職業暴露與防試題及答案
- 2025年高考政治搶押秘籍(江蘇專用)時政熱點03發展民營經濟-(江蘇專用)(學生版+解析)
- 2025年四川省成都市錦江區中考二診物理試題(含答案)
- DB34T 4720-2024工會驛站運維服務規范
- 安川機器人手動操縱及編程基礎
- 焊接設備維護與保養試題及答案
- 《民間借貸法規解析》課件
- 藍色簡約風美國加征關稅
- 規范種植品種管理制度
評論
0/150
提交評論