設(shè)計-計算書本工程位于批準(zhǔn)用地建筑功能為小區(qū)住宅樓建筑面積約_第1頁
設(shè)計-計算書本工程位于批準(zhǔn)用地建筑功能為小區(qū)住宅樓建筑面積約_第2頁
設(shè)計-計算書本工程位于批準(zhǔn)用地建筑功能為小區(qū)住宅樓建筑面積約_第3頁
設(shè)計-計算書本工程位于批準(zhǔn)用地建筑功能為小區(qū)住宅樓建筑面積約_第4頁
設(shè)計-計算書本工程位于批準(zhǔn)用地建筑功能為小區(qū)住宅樓建筑面積約_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余72頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

為15.0m設(shè)計基準(zhǔn)期為5年,二級的結(jié)構(gòu)安全等級,四級抗震等級,二級耐火等級,三級采光等級,6度的抗震設(shè)防烈度,丙級地礎(chǔ)設(shè)計,屋面防平、立、剖、詳?shù)葓D的設(shè)計。利用PkPM專業(yè)軟件進(jìn)行了梁板柱的配筋以及基:框架結(jié)構(gòu),獨(dú)立基礎(chǔ),住宅ThisprojectislocatedinQingdao,landuseplanningapproval.Buildingfunctionforthevillageresidentialbuilding,buildingareaof2023m2,eachresidentialbuildingisframestructureformofindependentfoundation,atotaloftwounits,fivelayeratotalheightof15.0mdesignreferenceperiodfor5years,thestructureofthesecondarysecuritylevels,level4seismicgrade,secondaryrefractorygrade,classdaylighting,seismicfortificationintensityis6degrees,andforthefoundationdesign,cclassroofingwaterproof.With"theeconomicandreasonable,functionaluse,beautifulappearance,environmentalright"asthebasicprinciple,carriedoutinaccordancewiththenationalrelevantspecification,standardrequirementsspecificationrequirementsofbuildingfacilities,set,anddetaildesign.UsingPkPMsoftwaretothereinforcementofbeamplatecolumnandfoundationThisprojectislocatedinQingdao,landuseplanningapproval.Buildingfunctionforthevillageresidentialbuilding,buildingareaof2023m2,eachresidentialbuildingisframestructureformofindependentfoundation,atotaloftwounits,fivelayeratotalheightof15.0mdesignreferenceperiodfor5years,thestructureofthesecondarysecuritylevels,level4seismicgrade,secondaryrefractorygrade,classdaylighting,seismicfortificationintensityis6degrees,andforthefoundationdesign,cclassroofingwaterproof.With"theeconomicandreasonable,functionaluse,beautifulappearance,environmentalright"asthebasicprinciple,carriedoutinaccordancewiththenationalrelevantspecification,standardrequirementsspecificationrequirementsofbuildingfacilities,set,anddetaildesign.UsingPkPMsoftwaretothereinforcementofbeamplatecolumnandfoundationreinforcementcalculation.Intermsofstructuredesign,inlinewiththeprincipleof"safe,applicable,durable",hascarriedontheinternalforcecombination,plate,beam,column,foundation,verticalloadtogether,forcecalculation,internalforcecombinationstructuredesignandso:residetialbilding,framestrcture,independent前 建筑設(shè)計 工程概況 自然條 荷載條 技術(shù)經(jīng)濟(jì)條 材料選 結(jié)構(gòu)設(shè)計說 框架計算簡圖及梁柱線剛 豎向荷載計 風(fēng)荷載作用下的框架內(nèi)力計 抗震計 內(nèi)力組 截面設(shè)計與配筋計 2.7.基礎(chǔ)截面設(shè) 結(jié) 致 參考文 工程概

1單戶建筑面積:70m2~110m2范圍內(nèi)50b類,耐火等級為二級,地礎(chǔ)設(shè)計等級為丙級。層數(shù)與層數(shù)為五層,住宅樓層高宜為2.8m設(shè)計標(biāo)高±0.00028.6℃,2.2℃719mm,80mm雨季施工起止日期:71~930日冬季施工起止日期:125~次年35日1表 各巖土層力學(xué)指標(biāo)匯總fak(kPa(MPa(kN/m3厚度(m1——27.6/318.7/E439/E水文地質(zhì)概況:最高水位-3.6m,常年水位-3.9m,無腐蝕性 a抗震設(shè)防烈度為6度,設(shè)計分組為第一組,設(shè)計基本加速度值0.05g0基本風(fēng)壓w=0.60kN/m2B00基本雪壓s=0.20kN/m20C30。交通條件:本工程可利用性公路,工具為汽車現(xiàn)場水電情況:工地附近有自來水和高壓線可供使用5選用:建筑安裝工程統(tǒng)一勞動,山東省建筑工程消耗量310~1110材料的選C30HRB335,240mm×120mm×60mm,重度=18kN/采用水泥空心磚,其尺寸為,240mm×120mm×60 鋼塑門窗=0.35kN/㎡門:=0.2kN/㎡結(jié)構(gòu)設(shè)-1.250m,2.8m,4.05m,其余各層柱高從樓面算至上一層樓面(即層高)2.8m,由此可繪出框架計算簡圖如下圖:2.1框架梁柱的線剛度計注:對于中框架梁取I=2I 邊框為I=1.5I

左邊

=EI/l=3.0×107kN/㎡×2×

×0.25m×0.53m/6.0m=4.0×104i=4.0×104kN.m=i中跨梁:i中跨梁=EI/l=3.0×107kN1×0.2505m31×0.404m31底層柱 ×0.404m3令i左上層柱 則其余各桿件相對線剛度為i左右邊跨i中跨梁

4.0

i底層柱2.3104KN.m恒載標(biāo)準(zhǔn)值計(1)防水層(剛性)30厚細(xì)石混凝土防水 1.0kN/㎡ 找平層:15厚水泥砂漿 0.015m×20kN/m3=0.30kN/㎡找坡層:40厚水泥石灰焦渣砂漿2‰找平 0.04m×14kN/m3=0.56kN/㎡保溫層:80厚礦渣水泥 0.08m×14.5kN/m3=1.16kN/㎡結(jié)構(gòu)層:120厚現(xiàn)澆鋼筋混凝土板 0.12m×25kN/m3=3kN/㎡抹灰層:10厚混合砂漿 合計:6.89kN/大理石面層,水泥砂漿擦縫、30厚。1:3干硬性水泥砂漿,面上撒2㎜厚素水泥水泥漿結(jié)合層一道 1.16kN/㎡結(jié)構(gòu)層:120厚現(xiàn)澆鋼筋混凝土板 0.12m×25kN/m3=3kN/㎡抹灰層:10厚混合砂漿 0.01×17kN/m3=0.17kN/㎡合計:4.33kN/橫梁自重b×h=250×500梁自重: 25klN/m3×0.25m×(0.5m-0.12m)=2.38kN/m抹灰層:10厚混合砂漿 0.01m×[(0.5m-0.12m)×2+0.25m×17kN/m3合計連系 b×h=200㎜×400梁自 抹灰層:10厚混合砂 0.01m×[(0.4m-17kN/m3基礎(chǔ)梁b×h=200㎜×400㎜ 25kN/m3×0.20m×0.4m=2kN/m柱尺 b×h=400㎜×400柱自重 25kN/m3×0.4m×0.4m=4抹灰層:10厚混合砂 0.01m×0.4m×4×17kN/m3 0.8m×0.24m×18N/m3=3.46kN/m 水刷石外: (2.8m-1.5m-0.5m)×0.5kN/㎡=0.4kN/m水泥粉刷內(nèi) (2.8m-1.5m-0.5m)×0.36kN/㎡縱墻 水刷石外 水泥粉刷內(nèi) 鋁合金 合計縱墻 (2.8m-0.5m)×0.24m×9.8kN/m3水泥粉刷 (2.8m-0.5m)×0.36kN/㎡×2=2.16合計活荷載標(biāo)準(zhǔn)值計樓面:2.0kN/㎡Sk=1.0×0.2kN/㎡=0.2kN/豎向荷載作用下框架內(nèi)力計取②軸線橫向框架進(jìn)行計算,計算單元寬度為3.6m,如圖2.2所示,該框架的樓圖 板傳荷載示意圖(2)A-B1-22a3 6.89kN/㎡×1.8×(1-2a2+a3)×2=21.58kN/m 0.5×1.8×2×(1-2a2+a3)=1.57kN/m恒載 4.33kN/㎡×1.8×(1-2a2+a3 2.0×1.8×2×(1-2a2+a3)=6.26kN/m 2.55kN/mA-B屋面梁:恒載=梁自重+板傳荷載=2.55kN/m+21.58kN/m=24.13活荷載=板傳荷 =1.57樓面梁:恒載=梁自重+板傳荷載=2.55kN/m+13.56kN/m=活荷載=板傳荷載 6.26(3)B-C:1-2a2a35恒載 6.89kN/㎡×0.75m×8×2=5.965活載 0.5kN/㎡×0.75m×8×2=0.445恒載 4.33kN/㎡×0.75×85活載 2.0kN/m×0.75m×8梁自重 2.55B-C屋面梁:恒載=梁自重+板傳=2.55活荷載=板傳荷載樓面梁:恒載=梁自重+板傳荷載=2.55kN/m+3.75活荷載=板傳荷載=1.88(4)C-D:1-22a3恒載 6.89kN/㎡×1.8×(1-2a2+a3 0.5×1.8×2×(1-2a2+a3)=1.57kN/m恒載 4.33kN/㎡×1.8×(1-2a2+a3 v2.0×1.8×2×(1-2a2+a3)=6.26kN/m C-D屋面梁:恒載=梁自重+板傳荷載=活荷載=板傳荷 樓面梁:恒載=梁自重+板傳荷載=2.55活荷載=板傳荷載 (5)A(600,1000.6m×18kN/m3+25kN/㎡×0.1×0.24m×(0.7×2+0.24)×0.5kN/=6.41kN/m×3.6+2.55kN/m×(3.6m- +6.89kN/㎡×3.6m×8×1.8m+(1.88kN/m×2+1.88×3.9)×3.95頂層柱活荷載=板傳荷載=0.5kN/×3.6m×8×1.8m=2.035=4.68kN/m×(3.6m-0.4m)+4.33kN/m×3.6m×81.5+ (3.6- +1.88kN/m×3.9)3.95標(biāo)準(zhǔn)層柱活載:板傳活載=2.0×3.6×8=8.35kN/m×(3.6m-0.4m)+2kN/m×(3.6m-0.4m)=33.12(6)B頂層柱恒載=梁自重+板傳荷載=2.55kN/m×(3.6m-0.4m)+6.8kN/m×8

×3.6m+6.89kN/m×[1-2×0.212×0.213]+6.89×6.75×[1-2×0.4220.423+1.88×(1.8+1.2)×2.7+1.88×1.5×0.25=48.85 頂層柱活載=板傳荷載=0.5×0.75×[1-2×0.212+3×0.213]+0.5×0.75×(1-0.212×

)+0.5×1.8×8

×1.8=標(biāo)準(zhǔn)層柱恒載=梁自重+板傳荷載+墻自重=4.68kN/m×(3.6m-(4.33kN/m×1.8×8

0.212+3×0.213 0.7×[1-20.422×+3×0.423×0.9×3.9=46.45標(biāo)準(zhǔn)層柱活載=板傳活載=11.72

2+1.2)×3.9基礎(chǔ)頂面恒載=基礎(chǔ)梁自重+底層內(nèi)隔墻自重=2kN/m×(3.6-=29.02(7)C頂層柱恒載=梁自重+板傳荷載=47.95頂層柱活載=板傳荷載=2.71標(biāo)準(zhǔn)層柱恒載=梁自重+板傳荷載+墻自重標(biāo)準(zhǔn)層柱活載=板傳活載=11.72(8)D(600,100=0.24m×0.6m×18kN/m3+25.18kN/㎡0.5kN/㎡頂層柱恒荷載=女兒墻自重+梁自重+板傳荷載=60.97頂層柱活荷載=板傳荷載=2.03標(biāo)準(zhǔn)層柱:柱恒荷載=墻自重+梁自重+板傳荷載=49.40標(biāo)準(zhǔn)層柱活載:板傳活載基礎(chǔ)頂面恒載=底層外縱墻自重+基礎(chǔ)梁自重圖(2.3)豎向受荷總圖使用分層法計算框架彎A-B軸:頂層:24.13kN/m B-C軸:頂層:8.51kN/m C-D軸:頂層 標(biāo)準(zhǔn)層圖(2.4)框架梁受荷圖圖(2.5)頂層彎矩分配圖圖(2.6)標(biāo)準(zhǔn)層彎矩分配圖圖(2.7)底層計算單元及彎矩分配圖圖(2.9)彎矩調(diào)幅后框架彎矩圖圖(2.10)活荷載作用下頂層的桿端彎矩計算圖圖(2.11)活荷載作用下標(biāo)準(zhǔn)層的桿端彎矩計算圖圖(2.12)活荷載作用下底層的桿端彎矩計算圖圖(2.13)活荷載作用下框架彎矩圖圖(2.14)調(diào)幅后活荷載作用下框架彎矩圖0.85,調(diào)幅后橫載和活載彎矩圖見以上各圖。

VVq

ql2Vm梁端彎矩引起的剪力,Vm

Ml

M

NV式中:VP圖 恒載作用下的最終剪力圖圖(2.16)活載作用下的最終剪力圖圖(2.17)恒載作用下的最終軸力圖圖(2.18)活載作用下的最終軸力圖計算柱的反彎點(diǎn)高度mnK查表得到柱反彎點(diǎn)系數(shù)yo據(jù)上下橫梁線剛度比值來查得修正值y1,根據(jù)上下層高度變化查得修正值y2y3反彎yh=(yoy1y2y3)h表(2.1)A表(2.2)B表(2.3)C表(2.4)D框架柱端剪力及彎矩分別按下列公式計算柱端剪力:Vij=DijVi下端彎矩:M上端彎矩:Muij=Vij(1-上式中yny2、y3為上下層層高變化時反彎點(diǎn)高度比的修正值。y底層柱需考慮修正值y2,第二層柱需考慮修正值y1和y3,其它柱均。表(2.5)A軸框架柱剪力和梁端彎矩的計算表(2.6)B表(2.7)C表(2.8)D表(2.9)重力荷載代表值計集中于各樓層標(biāo)高處的重力荷載代表值Gi計算。計算過程為:1250%屋面雪荷載:= 345女兒墻自重=4.01′(9.3+42.6)′6半層柱自重:4.27′58′7 =共計1樓面恒載:4.33′250%5.16′3上下各半層柱自重:346.72′42′共計 1樓面恒載250%5.16′3上下各半層柱自重:346.72+4.27′4.05/2′42′729.21+4.68′(4.8-0.4)′12+4.68′(42.6-0.4′14)+8.35(42.6-0.4′共計 圖(2.19)各層重力荷載代表值橫向框架側(cè)移剛度的計ibicD

12ic計算,式中系數(shù)(根據(jù)梁柱的線剛度比k的不同c I0為梁矩形部分的截面慣性矩。表(2.10)橫梁線剛度ibNmm2bIlEcll2Ecl525024.02002.24.4表(2.11)柱線剛度icNmm2bmm2Imm4EcIcN4001400表(2.12)kib(一般層k(一般層 kDciEIC kib(底層k0.5(底層 kckkckki1kki1i2i3ki1表(2.15)A/DkEIc kbkkc 2D=kCc50.440.430.420.410.4表(2.16)B/CkEIc kbkkc 2D=kCc50.440.430.420.410.4橫框架自振周期計按式T1=1.7jr?CTgamax

a1Geq計算周期T1,其中mrmjr=0.7。??54321

橫向作用計算及樓層剪力計在C類場地,6度設(shè)防烈度,結(jié)構(gòu)的特征周期T和影響系數(shù)Tgamax=0.12(最大影響系數(shù)40m故采用底部剪力法計算水平作用,結(jié)構(gòu)總水平作用標(biāo)準(zhǔn)值按公式Geq=0.85′

=aTg

0.4501 (T)max(0.471

0.12因為:Tg<T1=0.47s<5T h2=1.0(阻尼調(diào)整系數(shù))g1a=(Tg) =(0.45)091.00.12121

FEK1Geq0.120.85Gi0.1219652.761因為1.4T=1.40.45s=0.63s>T=0.47s,所以不考慮頂部附加作用1g表(2.12)各層橫向作用及樓層剪HinGiHi/GkHK54321nj—1—各質(zhì)點(diǎn)水平作用及了樓層剪力沿屋高分布圖(2.20)各質(zhì)點(diǎn)作用分布圖圖水平作用下框架位移計算水 作用下框架結(jié)構(gòu)的層間位移ui和頂點(diǎn)位移

分別按公式 (uiViDij和u(ui)k計算,計算過程如表(11)表中e位移角

表(2.18)橫向水平作用下的位移計ujFi/iutujj54321由表中可知最大層間位移發(fā)生在第二層,其值為1/1421<1/550滿足式中uhDyhm,n,

查表得到柱反彎點(diǎn)系數(shù)yo根據(jù)上下橫梁線剛度比值來查得修正值y1,根據(jù)上下層高度變化查得修正值y2y3反yh=(yoy1y2y3)h中柱(C軸邊柱(D軸5同中柱(B軸同邊柱(A軸a1y1a1y1a3y3a3y34同中柱(B軸同邊柱(A軸a10y1a1y1a2y2a2y2a3y3a3y33同中柱(B軸同邊柱(A軸a10y1a1y1a2y2a2y2a3y3a3y32同中柱(B軸同邊柱(A軸a10y1a1y1a2y2a2y2a3y3a3y31同中柱(B軸同邊柱(A軸a10y1a1y1a2y2a2y2同中柱(B軸同邊柱(A軸a3y3a3y3水平作用下橫向框架的內(nèi)力分

上柱

=V(1

y

MD=Vyh

ViVijDyMbV MuV(1 5/-16546754.6626755754.664/-165461344.24267551344.243/-165461815.91267551815.912/-165462146.08267552146.081/-78432358.33100672358.334表(2.20)各柱剪力及彎矩值MlbMrbVb/NNNCN528.57-28.57-4-4(23374627)506-(23.3746.27)4(4627625)78-361(4627625)306-24(6257386)98-6(62.573.86)-14(73864691)876--(73.8646.91)表(2.21)各梁柱彎矩剪力及軸力值圖(2.23)梁端剪力圖ik圖(2.24)柱軸力圖層不考慮荷載作考慮荷載作1.35SGK1.4CSQ1.4WSW12SGK14SQ14W AMNAMNABVMNBMNBV22

f=14.3kN/mmcyf300KN/cyyf270KN/y

ft=1.43kN/表(2.24)活荷載按樓層的折減系數(shù)1表(2.25)承載力調(diào)整系數(shù)梁0.150.15b

1 f

1 2

框架柱截面設(shè)

N N

817.57103

817.58KN

fc

14.3

B取=400mm- hw3650.91因為

0.25c

(滿足BNb從柱的內(nèi)力組合表現(xiàn),NNbMN{M22.72KN{N

M{N{度=1.0H=4.05m

N

ei

eeh1.5647.78920035 f

14.3400

0.391 Nefbh(10.5 817.55103239.5514.340036520.39(10.5AS

1 f'(h' 300(365 HRB335,'AS,minAS'

0.6%

2

316(AAs=603mm2 第二組內(nèi)力N l04050mm,

0.5f 0.514.3

552.9

,取l04.0510.13

1

,所以 eeh1.8431.1740035

20.265f 14.3400 1 552.9103223.3514.340036520.265(10.5ASAS

300(365 316(AAs=603mm2 l04.05Nmax

,

,查表得 y0.9(fAf'A')0.90.98(14.340023006032)2649.8KN yM64.76kN/B軸柱 底層:最不利內(nèi)力組合N

V

4.863所以ccV

f

ASV 1

427.7890.0760.55所以可不驗算裂縫寬框架梁截面設(shè)正截面受彎承載力計算11s

fbh

14.3250

0.039,

0.041 SA1Sf

14.32504650.04 ft)%ff

bh0.21%250500S 312(

)ABBCAB(一層0.25c

Vb

V0.7f 91.241030.71.43250sv 0 1.25270按構(gòu)造要求配箍,取雙肢箍8@ABBC表(2.26)框架截面承載力配筋計算表(2.27)層梁515128@28@28@28@AB()

Mk

Mk0.87h

0.87465

289.73N/0AS

0.52501.1nd

te

1.1

0.012

eq

ini

3182

sk(1.9c0.08deq)0.294mm

表(2.28)(BC) 采用,HPB300f1.43N/mm2,f270N/ M22.72kN

C10 基礎(chǔ)頂面最不利內(nèi)力組合N

VM163kN標(biāo)準(zhǔn)值為N612.53kNV基礎(chǔ)尺寸確 (17.80.6190.7)18.45KN/ fafakdmd0.5A0

NKfa

259.5220

2.62m2,1.2

0方形基礎(chǔ) 無需修0

NK

612.53201.7821.3

MK7.660.816.3e MK

0.032

(2)

NK

NKGK(16e)242.98KPa1.2

NbN 0e0

33.21/817.58

/A16e,

l

j

圖(2.25)基礎(chǔ)尺寸圖Pj(PjmaxPjmin)/2(293.7222.38)/2

h=765mm則bc2h00.420.7651.9300

取l10.89m,b1b12h010.8920.3651.62 (ll1

bb1

)20.7hpft(b1h01

基礎(chǔ)配筋計P

lac

)222.381.780.4 j

j

j

M

1(293.7266.5)(21.780.4)(293.70266.5)1.78(1.780.89)2A M 0.9f

0.9270yP

lac

)

j

j

j

P)(2bb)

P)b(la)2

j

j

0.9f

0.9270

,應(yīng)按

ASS

pjM1P(bb)2(2la)1258.04(1.780.4)2(21.780.4) 24 0.9f

0.9270(765yM

1P(bb)2(2ll)

1258.04(1.780.89)2(21.78 M 0.9f

0.9270(365SyS

A5#四年的時間里,在學(xué)校里學(xué)到了不少東西,但是畢竟都是一些理論知識,雖然人深刻理解到,要做一份建筑設(shè)計是不容易,不僅要考慮到建筑物的實用性,學(xué)校通過這一次的畢業(yè)設(shè)計檢測學(xué)生四年的時間里學(xué)到的理論知識與實際應(yīng)在此,對那些對所有幫助過參考文房屋建筑制圖統(tǒng)一標(biāo)準(zhǔn)GB50001-民用建筑設(shè)計通則GB50352-GB50096-民用建筑工程建筑施工圖設(shè)計深度圖樣建筑設(shè)計防火規(guī) GB50016-建筑采光設(shè)計標(biāo)準(zhǔn)GB/T50033-建筑結(jié)構(gòu)制圖標(biāo)準(zhǔn)GB/T50105-建筑結(jié)構(gòu)荷載規(guī)范GB50009—混凝土結(jié)構(gòu)設(shè)計規(guī)范GB50010—建筑地礎(chǔ)設(shè)計規(guī)范GB50007—建筑抗震設(shè)計規(guī)范GB50011—混凝土結(jié)構(gòu)施工圖平面表示法民用建筑工程結(jié)構(gòu)施工圖設(shè)計深度圖樣建筑設(shè)計資料集(10)中國建筑工業(yè)結(jié)構(gòu)設(shè)計資料集(共4冊 中國建筑工業(yè)建筑安裝工程統(tǒng)一勞 [合訂本(一(二StructuralSystemstoresistlateralCommonlyUsedstructuralWithloadsmeasuredintensofthousandskips,thereislittleroominthedesignofhigh-risebuildingsforexcessivelycomplexthoughts.Indeed,thebetterhigh-risebuildingscarrytheuniversaltraitsofsimplicityofthoughtandclarityofexpression.Itdoesnotfollowthatthereisnoroomforgrandthoughts.Indeed,itiswithsuchgrandthoughtsthatthenewfamilyofhigh-risebuildingshasevolved.Perhapsmoreimportant,thenewconceptsofbutafewyearsagohave ecommonplaceintoday’sOmittingsomeconceptsthatarerelatedstrictlytothematerialsofconstruction,themostcommonlyusedstructuralsystemsusedinhigh-risebuildingscanbecategorizedasMoment-resistingBracedframes,includingeccentricallybracedShearwalls,includingsteelplateshearTube-in-tubeTube-in-tubeCore-interactiveCellularorbundled-tubeParticularlywiththerecenttrendtowardmorecomplexforms,butinresponsealsototheneedforincreasedstiffnesstoresisttheforcesfromwindandearthquake,mosthigh-risebuildingshavestructuralsystemsbuiltupofcombinationsofframes,bracedbents,shearwalls,andrelatedsystems.Further,forthetallerbuildings,themajoritiesarecomposedofinteractiveelementsinthree-dimensionalarrays.Themethodofcombiningtheseelementsistheveryessenceofthedesignprocessforhigh-risebuildings.Thesecombinationsneedevolveinresponsetoenvironmental,functional,andcostconsiderationssoastoprovideefficientstructuresthatprovokethearchitecturaldevelopmenttonewheights.Thisisnottosaythatimaginativestructuraldesigncancreategreatarchitecture.Tothecontrary,manyexamplesoffinearchitecturehavebeencreatedwithonlymoderatesupportfromthestructuralengineer,whileonlyfinestructure,notgreatarchitecture,canbedevelopedwithouttiusandtheleadershipofatalentedarchitect.Inanyevent,thebestofbothisneededtoformulateatrulyextraordinarydesignofahigh-risebuilding.Whilecomprehensivediscussionsofthesesevensystemsaregenerallyavailableinliterature,furtherdiscussioniswarrantedhere.Theessenceofthedesignprocessisdistributedthroughoutthediscussion.Perhapsthemostcommonlyusedsysteminlow-tomedium-risebuildings,themoment-resistingframe,ischaracterizedbylinearhorizontalandverticalmembersconnectedessentiallyrigidlyattheirjoints.Suchframesareusedasastand-alonesystemorincombinationwithothersystemssoastoprovidetheneeded tohorizontalloads.Inthetallerofhigh-risebuildings,thesystemislikelytobefoundinappropriateforastand-alonesystem,thisbecauseofthedifficultyinmobilizingsufficientstiffnessunderlateralforces.ysiscanbe plishedbySTRESS,STRUDL,orahostofotherappropriatecomputerprograms;ysisbytheso-calledportalmethodofthecantilevermethodhasnoplaceintoday’stechnology.Becauseoftheintrinsicflexibilityofthecolumn/girderintersection,andbecausepreliminarydesignsshouldaimtohighlightweaknessesofsystems,itisnotunusualtousecenter-to-centerdimensionsfortheframeinthepreliminaryysis.Ofcourse,inthelatterphasesofdesign,arealisticappraisalin-jointdeformationisessential.BracedThebracedframe,intrinsicallystifferthanthemoment–resistingframe,findsalsogreaterapplicationtohigher-risebuildings.Thesystemischaracterizedbylinearhorizontal,vertical,anddiagonalmembers,connectedsimplyorrigidlyattheirjoints.Itisusedcommonlyinconjunctionwithothersystemsfortallerbuildingsandasastand-alonesysteminlow-tomedium-risebuildings.Whiletheuseofstructuralsteelinbracedframesiscommon,concreteframesaremorelikelytobeofthelarger-scalevariety.OfspecialinterestinareasofhighseismicityistheuseoftheeccentricbracedAgain,ysiscanbebySTRESS,STRUDL,oranyoneofaseriesoftwo–orthreedimensionalysiscomputerprograms.Andagain,center-to-centerdimensionsareusedcommonlyinthepreliminaryysis.ShearTheshearwallisyetanotherstepforwardalongaprogressionofever-stifferstructuralsystems.Thesystemischaracterizedbyrelativelythin,generally(butnotalways)elementsthatprovidebothstructuralstrengthandseparationbetweenbuildingInhigh-risebuildings,shearwallsystemstendtohavearelativelyhighaspectratio,thatis,theirheighttendstobelargecomparedtotheirwidth.Lackingtensioninthefoundationsystem,anystructuralelementislimitedinitsabilitytoresistoverturningmomentbythewidthofthesystemandbythegravityloadsupportedbytheelement.Limitedtoanarrowoverturning,Oneobvioususeofthesystem,whichdoeshavetheneededwidth,isintheexteriorwallsofbuilding,wheretherequirementforwindowsiskeptsmall.Structuralsteelshearwalls,generallystiffenedagainstbucklingbyaconcreteoverlay,havefoundapplicationwhereshearloadsarehigh.Thesystem,intrinsicallymoreeconomicalthansteelbracing,isparticularlyeffectiveincarryingshearloadsdownthroughthetallerfloorsintheareasimmediayabovegrade.ThesystemhasthefurtheradvantageofhavinghighductilityafeatureofparticularimportanceinareasofhighTheysisofshearwallsystemsismadecomplexbecauseoftheinevitablepresenceoflargeopeningsthroughthesewalls.Preliminaryysiscanbebytruss-ogy,bythefiniteelementmethod,orbymakinguseofaproprietarycomputerprogramdesignedtoconsidertheinteraction,orcoupling,ofshearwalls.FramedorBracedTheconceptoftheframedorbracedorbracedtubeeruptedintothetechnologywiththeIBMBuildinginPittsburgh,butwasfollowedimmediaywiththetwin110-storytowersoftheWorldTradeCenter,NewYorkandanumberofotherbuildings.Thesystemischaracterizedbythree–dimensionalframes,bracedframes,orshearwalls,formingaclosedsurfacemoreorlesscylindricalinnature,butofnearlyanyplanconfiguration.Becausethosecolumnsthatresistlateralforcesareplacedasfaraspossiblefromthecancroidsofthesystem,theoverallmomentofinertiaisincreasedandstiffnessisveryTheysisoftubularstructuresisdoneusingthree-dimensionalconcepts,orbytwo-dimensionalogy,wherepossible,whichevermethodisused,itmustbecapableofaccountingfortheeffectsofshearlag.Thepresenceofshearlag,detectedfirstinaircraftstructures,isaseriouslimitationinthestiffnessofframedtubes.Theconcepthaslimitedrecentapplicationsofframedtubestotheshearof60stories.Designershavedevelopedvarioustechniquesforreducingtheeffectsofshearlag,mostnoticeablytheuseofbelttrusses.Thissystemfindsapplicationinbuildingsperhaps40storiesandhigher.However,exceptforpossibleaestheticconsiderations,belttrussesinterferewithnearlyeverybuildingfunctionassociatedwiththeoutsidewall;thetrussesareplacedoftenatmechanicalfloors,mushtothedisapprovalthedesignersofthemechanicalsystems.Nevertheless,asacost-effectivestructuralsystem,thebelttrussworkswellandwilllikelyfindcontinuedapprovalfromdesigners.Numerousstudieshavesoughttooptimizethelocationofthesetrusses,withtheoptimumlocationverydependentonthenumberoftrussesprovided.Experiencewouldindicate,however,thatthelocationofthesetrussesisprovidedbytheoptimizationofmechanicalsystemsandbyaestheticconsiderations,astheeconomicsofthestructuralsystemisnothighlysensitivetobelttrusslocation.Thetubularframingsystemmobilizeseverycolumnintheexteriorwallinresistingover-turningandshearingforces.Theterm‘tube-in-tube’islargelyself-explanatoryinthatasecondringofcolumns,theringsurroundingthecentralservicecoreofthebuilding,isusedasaninnerframedorbracedtube.Thepurposeofthesecondtubeistoincreasetooverturningandtoincreaselateralstiffness.Thetubesneednotbeofthesamecharacter;thatis,onetubecouldbeframed,whiletheothercouldbebraced.Inconsideringthissystem,isimportanttounderstandclearlythedifferencebetweentheshearandtheflexuralcomponentsofdeflection,thetermsbeingtakenfrombeamogy.Inaframedtube,theshearcomponentofdeflectionisassociatedwiththebendingdeformationofcolumnsandgirders(i.e,thewebsoftheframedtube)whiletheflexuralcomponentisassociatedwiththeaxialshorteningandlengtheningofcolumns(i.e,theflangesoftheframedtube).Inabracedtube,theshearcomponentofdeflectionisassociatedwiththeaxialdeformationofdiagonalswhiletheflexuralcomponentofdeflectionisassociatedwiththeaxialshorteningandlengtheningofcolumns.Followingbeamogy,ifplanesurfacesremainplane(i.e,thefloorslabs),thenaxialstressesinthecolumnsoftheoutertube,beingfartherformtheneutralaxis,willbesubstantiallylargerthantheaxialstressesintheinnertube.However,inthetube-in-tubedesign,whenoptimized,theaxialstressesintheinnerringofcolumnsmaybeashigh,orevenhigher,thantheaxialstressesintheouterring.Thisseeminganomalyisassociatedwithdifferencesintheshearingcomponentofstiffnessbetweenthe.Thisiseasiesttounder-standwheretheinnertubeisconceivedasabraced(i.e,shear-stiff)tubewhiletheoutertubeisconceivedasaframed(i.e,shear-flexible)tube.CoreInteractiveCoreinteractivestructuresareaspecialcaseofatube-in-tubewhereinthetwotubesarecoupledtogetherwithsomeformofthree-dimensionalspaceframe.Indeed,thesystemisusedoftenwhereintheshearstiffnessoftheoutertubeiszero.TheUnitedStatesSteelBuilding,Pittsburgh,illustratesthesystemverywell.Here,theinnertubeisabracedframe,theoutertubehasnoshearstiffness,andthetwosystemsarecouplediftheywereconsideredassystemspassinginastraightlinefromthe“hat”structure.Notethatexteriorcolumnswouldbeimproperlymodelediftheywereconsideredassystemspassinginastraightlinefromthe“hat”tothefoundations;thesecolumnsareperhaps15%stifferastheyfollowtheelasticcurveofthebracedcore.Notealsothattheaxialforcesassociatedwiththelateralforcesintheinnercolumnschangefromtensiontocompressionovertheheightofthetube,withtheinflectionpointatabout 5/8oftheheightofthetube.Theoutercolumns,ofcourse,carrythesameaxialforceunderlateralloadforthefullheightofthecolumnsbecausethecolumnsbecausetheshearstiffnessofthesystemisclosetozero.Thespacestructuresofoutriggergirdersortrusses,thatconnecttheinnertubetotheoutertube,arelocatedoftenatseverallevelsinthebuilding.TheAT&Theadquartersisanexampleofanastonishingarrayofinteractiveelements:Thestructuralsystemis94ft (28.6m)wide,196ft(59.7m)long,and601ft(183.3m)Twoinnertubesareprovided,each31ft(9.4m)by40ft(12.2m),centered90ft(27.4m)apartinthelongdirectionofthebuilding.Theinnertubesarebracedintheshortdirection,butwithzeroshearstiffnessinthelongdirection.Asingleoutertubeisd,whichencirclesthebuildingTheoutertubeisamoment-resistingframe,butwithzeroshearstiffnessforthecenter50ft(15.2m)ofeachofthelon

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論