




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.要排出高三某班一天中,語文、數學、英語各節,自習課節的功課表,其中上午節,下午節,若要求節語文課必須相鄰且節數學課也必須相鄰(注意:上午第五節和下午第一節不算相鄰),則不同的排法種數是()A. B. C. D.2.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.3.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.4.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.5.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.6.下列函數中,既是偶函數又在區間上單調遞增的是()A. B. C. D.7.“紋樣”是中國藝術寶庫的瑰寶,“火紋”是常見的一種傳統紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內,并向該正方形內隨機投擲200個點,己知恰有80個點落在陰影部分據此可估計陰影部分的面積是()A. B. C.10 D.8.學業水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人9.如圖是一個幾何體的三視圖,則這個幾何體的體積為()A. B. C. D.10.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.11.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發,已知在的北偏西的方向上,在的北偏東的方向上,現在船往東開2百海里到達處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.12.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關關系,統計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關關系為()A.正相關,相關系數的值為B.負相關,相關系數的值為C.負相關,相關系數的值為D.正相關,相關負數的值為二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.14.已知,則滿足的的取值范圍為_______.15.角的頂點在坐標原點,始邊與軸的非負半軸重合,終邊經過點,則的值是.16.若的展開式中只有第六項的二項式系數最大,則展開式中各項的系數和是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(Ⅰ)當時,討論函數的單調區間;(Ⅱ)若對任意的和恒成立,求實數的取值范圍.18.(12分)在直角坐標系xOy中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數方程為(θ為參數).(Ⅰ)求曲線C1和C2的極坐標方程:(Ⅱ)設射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點,求|AB|的值.19.(12分)為了拓展城市的旅游業,實現不同市區間的物資交流,政府決定在市與市之間建一條直達公路,中間設有至少8個的偶數個十字路口,記為,現規劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數據如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認為喜歡樹木的種類與居民所在的城市具有相關性;(2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求的分布列以及數學期望;(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82820.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點,且,求直線與平面所成角的正弦值.21.(12分)已知各項均為正數的數列的前項和為,滿足,,,,恰為等比數列的前3項.(1)求數列,的通項公式;(2)求數列的前項和為;若對均滿足,求整數的最大值;(3)是否存在數列滿足等式成立,若存在,求出數列的通項公式;若不存在,請說明理由.22.(10分)已知函數的圖象向左平移后與函數圖象重合.(1)求和的值;(2)若函數,求的單調遞增區間及圖象的對稱軸方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據題意,分兩種情況進行討論:①語文和數學都安排在上午;②語文和數學一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數目,由分類加法計數原理可得答案.【詳解】根據題意,分兩種情況進行討論:①語文和數學都安排在上午,要求節語文課必須相鄰且節數學課也必須相鄰,將節語文課和節數學課分別捆綁,然后在剩余節課中選節到上午,由于節英語課不加以區分,此時,排法種數為種;②語文和數學都一個安排在上午,一個安排在下午.語文和數學一個安排在上午,一個安排在下午,但節語文課不加以區分,節數學課不加以區分,節英語課也不加以區分,此時,排法種數為種.綜上所述,共有種不同的排法.故選:C.【點睛】本題考查排列、組合的應用,涉及分類計數原理的應用,屬于中等題.2.C【解析】
先解不等式,可得出,求出函數的值域,由題意可知,不等式在定義域上恒成立,可得出關于的不等式,即可解得實數的取值范圍.【詳解】,先解不等式.①當時,由,得,解得,此時;②當時,由,得.所以,不等式的解集為.下面來求函數的值域.當時,,則,此時;當時,,此時.綜上所述,函數的值域為,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數不等式恒成立求參數,同時也考查了分段函數基本性質的應用,考查分類討論思想的應用,屬于中等題.3.C【解析】
根據表示圓和直線與圓有公共點,得到,再利用二次函數的性質求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關系以及二次函數的性質,還考查了運算求解的能力,屬于中檔題.4.A【解析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數基礎題.5.A【解析】
本道題繪圖發現三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【詳解】結合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結合拋物線性質可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【點睛】本道題考查了拋物線的基本性質,難度中等.6.C【解析】
結合基本初等函數的奇偶性及單調性,結合各選項進行判斷即可.【詳解】A:為非奇非偶函數,不符合題意;B:在上不單調,不符合題意;C:為偶函數,且在上單調遞增,符合題意;D:為非奇非偶函數,不符合題意.故選:C.【點睛】本小題主要考查函數的單調性和奇偶性,屬于基礎題.7.D【解析】
直接根據幾何概型公式計算得到答案.【詳解】根據幾何概型:,故.故選:.【點睛】本題考查了根據幾何概型求面積,意在考查學生的計算能力和應用能力.8.D【解析】
根據題意分別計算出物理等級為,化學等級為的學生人數以及物理等級為,化學等級為的學生人數,結合表格中的數據進行分析,可得出合適的選項.【詳解】根據題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變為:物理化學對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.9.A【解析】
由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【點睛】本題主要考查由三視圖求面積、體積,關鍵是由三視圖還原原幾何體,意在考查學生對這些知識的理解掌握水平.10.B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.11.B【解析】
先根據角度分析出的大小,然后根據角度關系得到的長度,再根據正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關鍵.12.C【解析】
根據正負相關的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關.相關系數為負.故選:C.【點睛】本題考查變量的相關關系,考查正相關和負相關的區別.掌握正負相關的定義是解題基礎.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由已知可得,結合雙曲線的定義可知,結合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質.本題的關鍵是根據幾何關系,分析出.關于圓錐曲線的問題,一般如果能結合幾何性質,可大大減少計算量.14.【解析】
將f(x)寫成分段函數形式,分析得f(x)為奇函數且在R上為增函數,利用奇偶性和單調性解不等式即可得到答案.【詳解】根據題意,f(x)=x|x|=,則f(x)為奇函數且在R上為增函數,則f(2x﹣1)+f(x)≥0?f(2x﹣1)≥﹣f(x)?f(2x﹣1)≥f(﹣x)?2x﹣1≥﹣x,解可得x≥,即x的取值范圍為[,+∞);故答案為:[,+∞).【點睛】本題考查分段函數的奇偶性與單調性的判定以及應用,注意分析f(x)的奇偶性與單調性.15.【解析】試題分析:由三角函數定義知,又由誘導公式知,所以答案應填:.考點:1、三角函數定義;2、誘導公式.16.【解析】
由題意得出展開式中共有11項,;再令求得展開式中各項的系數和.【詳解】由的展開式中只有第六項的二項式系數最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數和是:.故答案為:1.【點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數和的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)首先求得導函數,然后結合導函數的解析式分類討論函數的單調性即可;(Ⅱ)將原問題進行等價轉化為,,恒成立,然后構造新函數,結合函數的性質確定實數的取值范圍即可.【詳解】解:(Ⅰ)當時,,當時,在上恒成立,函數在上單調遞減;當時,由得:;由得:.∴當時,函數的單調遞減區間是,無單調遞增區間:當時,函數的單調遞減區間是,函數的單調遞增區間是.(Ⅱ)對任意的和,恒成立等價于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區間上單調遞減,在區間上單調遞增,∴當時,,即又∵,∴實數的取值范圍是:.【點睛】本題主要考查導函數研究函數的單調性和恒成立問題,考查分類討論的數學思想,等價轉化的數學思想等知識,屬于中等題.18.(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)根據,可得曲線C1的極坐標方程,然后先計算曲線C2的普通方程,最后根據極坐標與直角坐標的轉化公式,可得結果.(Ⅱ)將射線θ=分別與曲線C1和C2極坐標方程聯立,可得A,B的極坐標,然后簡單計算,可得結果.【詳解】(Ⅰ)由所以曲線的極坐標方程為,曲線的普通方程為則曲線的極坐標方程為(Ⅱ)令,則,,則,即,所以,,故.【點睛】本題考查極坐標方程和參數方程與直角坐標方程的轉化,以及極坐標方程中的幾何意義,屬基礎題.19.(1)沒有(2)分布列見解析,(3)證明見解析【解析】
(1)根據公式計算卡方值,再對應卡值表判斷..(2)根據題意,隨機變量的可能取值為0,1,2,3,4,分別求得概率,寫出分布列,根據期望公式求值.(3)因為至少8個的偶數個十字路口,所以,即.要證,即證,根據組合數公式,即證;易知有.成立.設個路口中有個路口種植楊樹,下面分類討論①當時,由論證.②當時,由論證.③當時,,設,再論證當時,取得最小值即可.【詳解】(1)本次實驗中,,故沒有99.9%的把握認為喜歡樹木的種類與居民所在的城市具有相關性.(2)依題意,的可能取值為0,1,2,3,4,故,,01234故.(3)∵,∴.要證,即證;首先證明:對任意,有.證明:因為,所以.設個路口中有個路口種植楊樹,①當時,,因為,所以,于是.②當時,,同上可得③當時,,設,當時,,顯然,當即時,,當即時,,即;,因此,即.綜上,,即.【點睛】本題考查獨立性檢驗、離散型隨機變量的分布列以及期望、排列組合,還考查運算求解能力以及必然與或然思想,屬于難題.20.(1)證明見解析(2)【解析】
(1)利用線段長度得到與間的垂直關系,再根據線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直角坐標系,利用直線的方向向量與平面的法向量夾角的余弦值的絕對值等于線面角的正弦值,計算出結果.【詳解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又為坐標原點,分別以、、為軸、軸、軸建立空間直角坐標系,則,,,,,,,∵,∴,設是平面的一個法向量則,即,取得∴∴直線與平面所成的正弦值為【點睛】本題考查線面垂直的證明以及用向量法求解線面角的正弦,難度一般.用向量方法求解線面角的正弦值時,注意直線方向向量與平面法向量夾角的余弦值的絕對值等于線面角的正弦值.21.(2),(2),的最大整數是2.(3)存在,【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 解除土建合同協議書
- 高危工作安全協議書
- 超市利潤分紅協議書
- 道路遷墳火化協議書
- 金供應商合同協議書
- 銷售生產訂單協議書
- 餐飲供應合同協議書
- 農村自流地換地協議書
- 餐具承包合同協議書
- 買車位只有認購協議書
- 黃泉下的美術:宏觀中國古代墓葬
- 無違法犯罪記錄證明申請表(個人)
- 內部調撥單表格
- 2023年07月浙江建設技師學院200人筆試歷年常考點試卷附帶答案詳解
- 中國真正丹道理法及工程次第闡真
- 2022年四川省成都市中考英語試卷及答案
- 新年春節廉潔過年過廉潔年端午節清廉文化中秋節廉潔過節優秀課件兩篇
- GB/T 10920-2008螺紋量規和光滑極限量規型式與尺寸
- 認知宇宙飛船之星際探索
- 皮膚病理知識學習整理課件整理
- 人工智能課件213產生式表示法
評論
0/150
提交評論