安徽高中教科研聯盟2022年數學高三上期末調研模擬試題含解析_第1頁
安徽高中教科研聯盟2022年數學高三上期末調研模擬試題含解析_第2頁
安徽高中教科研聯盟2022年數學高三上期末調研模擬試題含解析_第3頁
安徽高中教科研聯盟2022年數學高三上期末調研模擬試題含解析_第4頁
安徽高中教科研聯盟2022年數學高三上期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關于函數在區間的單調性,下列敘述正確的是()A.單調遞增 B.單調遞減 C.先遞減后遞增 D.先遞增后遞減2.若函數的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.3.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且4.已知底面為正方形的四棱錐,其一條側棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.5.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應填入A. B.C. D.6.過雙曲線左焦點的直線交的左支于兩點,直線(是坐標原點)交的右支于點,若,且,則的離心率是()A. B. C. D.7.如圖,設為內一點,且,則與的面積之比為A. B.C. D.8.已知函數是上的減函數,當最小時,若函數恰有兩個零點,則實數的取值范圍是()A. B.C. D.9.()A. B. C. D.10.如圖所示,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.11.設函數滿足,則的圖像可能是A. B.C. D.12.某校在高一年級進行了數學競賽(總分100分),下表為高一·一班40名同學的數學競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學生的數學競賽成績,運行相應的程序,輸出,的值,則()A.6 B.8 C.10 D.12二、填空題:本題共4小題,每小題5分,共20分。13.在數列中,,則數列的通項公式_____.14.的展開式中,的系數是__________.(用數字填寫答案)15.在的展開式中的系數為,則_______.16.已知,滿足約束條件,則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)對于正整數,如果個整數滿足,且,則稱數組為的一個“正整數分拆”.記均為偶數的“正整數分拆”的個數為均為奇數的“正整數分拆”的個數為.(Ⅰ)寫出整數4的所有“正整數分拆”;(Ⅱ)對于給定的整數,設是的一個“正整數分拆”,且,求的最大值;(Ⅲ)對所有的正整數,證明:;并求出使得等號成立的的值.(注:對于的兩個“正整數分拆”與,當且僅當且時,稱這兩個“正整數分拆”是相同的.)18.(12分)已知函數存在一個極大值點和一個極小值點.(1)求實數a的取值范圍;(2)若函數的極大值點和極小值點分別為和,且,求實數a的取值范圍.(e是自然對數的底數)19.(12分)在中,設、、分別為角、、的對邊,記的面積為,且.(1)求角的大??;(2)若,,求的值.20.(12分)設復數滿足(為虛數單位),則的模為______.21.(12分)已知,均為正數,且.證明:(1);(2).22.(10分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

先用誘導公式得,再根據函數圖像平移的方法求解即可.【詳解】函數的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數的平移與單調性的求解.屬于基礎題.2、D【解析】

由題可知,可轉化為曲線與有兩個公共點,可轉化為方程有兩解,構造函數,利用導數研究函數單調性,分析即得解【詳解】函數的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數研究函數的零點,考查了學生綜合分析,轉化劃歸,數形結合,數學運算的能力,屬于較難題.3、D【解析】

首先把三視圖轉換為幾何體,根據三視圖的長度,進一步求出個各棱長.【詳解】根據幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.4、C【解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖5、C【解析】

由于中正項與負項交替出現,根據可排除選項A、B;執行第一次循環:,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執行第二次循環:由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執行第三次循環:由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應填入,故選C.6、D【解析】

如圖,設雙曲線的右焦點為,連接并延長交右支于,連接,設,利用雙曲線的幾何性質可以得到,,結合、可求離心率.【詳解】如圖,設雙曲線的右焦點為,連接,連接并延長交右支于.因為,故四邊形為平行四邊形,故.又雙曲線為中心對稱圖形,故.設,則,故,故.因為為直角三角形,故,解得.在中,有,所以.故選:D.【點睛】本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構造關于的方程,本題屬于難題.7、A【解析】

作交于點,根據向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.8、A【解析】

首先根據為上的減函數,列出不等式組,求得,所以當最小時,,之后將函數零點個數轉化為函數圖象與直線交點的個數問題,畫出圖形,數形結合得到結果.【詳解】由于為上的減函數,則有,可得,所以當最小時,,函數恰有兩個零點等價于方程有兩個實根,等價于函數與的圖像有兩個交點.畫出函數的簡圖如下,而函數恒過定點,數形結合可得的取值范圍為.故選:A.【點睛】該題考查的是有關函數的問題,涉及到的知識點有分段函數在定義域上單調減求參數的取值范圍,根據函數零點個數求參數的取值范圍,數形結合思想的應用,屬于中檔題目.9、D【解析】

利用,根據誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導公式以及兩角差的正弦公式,關鍵在于掌握公式,屬基礎題.10、D【解析】因為蛋巢的底面是邊長為的正方形,所以過四個頂點截雞蛋所得的截面圓的直徑為,又因為雞蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點睛:本題主要考查折疊問題,考查球體有關的知識.在解答過程中,如果遇到球體或者圓錐等幾何體的內接或外接幾何體的問題時,可以采用軸截面的方法來處理.也就是畫出題目通過球心和最低點的截面,然后利用弦長和勾股定理來解決.球的表面積公式和體積公式是需要熟記的.11、B【解析】根據題意,確定函數的性質,再判斷哪一個圖像具有這些性質.由得是偶函數,所以函數的圖象關于軸對稱,可知B,D符合;由得是周期為2的周期函數,選項D的圖像的最小正周期是4,不符合,選項B的圖像的最小正周期是2,符合,故選B.12、D【解析】

根據程序框圖判斷出的意義,由此求得的值,進而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數,的取值為成績大于等于60且小于90的人數,故,,所以.故選:D【點睛】本小題考查利用程序框圖計算統計量等基礎知識;考查運算求解能力,邏輯推理能力和數學應用意識.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可得,又,數列的奇數項為首項為1,公差為2的等差數列,對分奇數和偶數兩種情況,分別求出,從而得到數列的通項公式.【詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數列的奇數項為首項為1,公差為2的等差數列,∴當為奇數時,,當為偶數時,則為奇數,∴,∴數列的通項公式,故答案為:.【點睛】本題考查求數列的通項公式,解題關鍵是由已知遞推關系得出,從而確定數列的奇數項成等差數列,求出通項公式后再由已知求出偶數項,要注意結果是分段函數形式.14、【解析】

根據組合的知識,結合組合數的公式,可得結果.【詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數為:故答案為:【點睛】本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質上每個因式中各取一項的乘積,轉化為組合的知識,屬中檔題.15、2【解析】

首先求出的展開項中的系數,然后根據系數為即可求出的取值.【詳解】由題知,當時有,解得.故答案為:.【點睛】本題主要考查了二項式展開項的系數,屬于簡單題.16、【解析】

根據題意,畫出可行域,將目標函數看成可行域內的點與原點距離的平方,利用圖象即可求解.【詳解】可行域如圖所示,易知當,時,的最大值為.故答案為:9.【點睛】本題考查了利用幾何法解決非線性規劃問題,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),,,,;(Ⅱ)為偶數時,,為奇數時,;(Ⅲ)證明見解析,,【解析】

(Ⅰ)根據題意直接寫出答案.(Ⅱ)討論當為偶數時,最大為,當為奇數時,最大為,得到答案.(Ⅲ)討論當為奇數時,,至少存在一個全為1的拆分,故,當為偶數時,根據對應關系得到,再計算,,得到答案.【詳解】(Ⅰ)整數4的所有“正整數分拆”為:,,,,.(Ⅱ)當為偶數時,時,最大為;當為奇數時,時,最大為;綜上所述:為偶數,最大為,為奇數時,最大為.(Ⅲ)當為奇數時,,至少存在一個全為1的拆分,故;當為偶數時,設是每個數均為偶數的“正整數分拆”,則它至少對應了和的均為奇數的“正整數分拆”,故.綜上所述:.當時,偶數“正整數分拆”為,奇數“正整數分拆”為,;當時,偶數“正整數分拆”為,,奇數“正整數分拆”為,故;當時,對于偶數“正整數分拆”,除了各項不全為的奇數拆分外,至少多出一項各項均為的“正整數分拆”,故.綜上所述:使成立的為:或.【點睛】本土考查了數列的新定義問題,意在考查學生的計算能力和綜合應用能力.18、(1);(2).【解析】

(1)首先對函數求導,根據函數存在一個極大值點和一個極小值點求出a的取值范圍;(2)首先求出的值,再根據求出實數a的取值范圍.【詳解】(1)函數的定義域為是,,若有兩個極值點,則方程一定有兩個不等的正根,設為和,且,所以解得,此時,當時,,當時,,當時,,故是極大值點,是極小值點,故實數a的取值范圍是;(2)由(1)知,,,則,,,由,得,即,令,考慮到,所以可化為,而,所以在上為增函數,由,得,故實數a的取值范圍是.【點睛】本題主要考查了利用導數研究函數的極值點和單調性,利用函數單調性證明不等式,屬于難題.19、(1);(2)【解析】

(1)由三角形面積公式,平面向量數量積的運算可得,結合范圍,可求,進而可求的值.(2)利用同角三角函數基本關系式可求,利用兩角和的正弦函數公式可求的值,由正弦定理可求得的值.【詳解】解:(1)由,得,因為,所以,可得:.(2)中,,所以.所以:,由正弦定理,得,解得,【點睛】本題主要考查了三角形面積公式,平面向量數量積的運算,同角三角函數基本關系式,兩角和的正弦函數公式,正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.20、1【解析】

整理已知利用復數的除法運算方式計算,再由求模公式得答案.【詳解】因為,即所以的模為1故答案為:1【點睛】本題考查復數的除法運算與求模,屬于基礎題.21、(1)見解析(2)見解析【解析】

(1)由進行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當且僅當時取等號,∴.(2).

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論