




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.2.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點在四棱錐的外接球面上運動,記點到平面的距離為,若平面平面,則的最大值為()A. B.C. D.3.已知函數,,若成立,則的最小值是()A. B. C. D.4.的展開式中,滿足的的系數之和為()A. B. C. D.5.已知等差數列的前項和為,若,,則數列的公差為()A. B. C. D.6.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數的取值范圍是()A. B. C. D.7.設,,,則的大小關系是()A. B. C. D.8.設復數滿足為虛數單位),則()A. B. C. D.9.已知復數滿足,則的最大值為()A. B. C. D.610.已知命題,那么為()A. B.C. D.11.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為()A.56383 B.57171 C.59189 D.6124212.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種二、填空題:本題共4小題,每小題5分,共20分。13.已知集合A=,B=,若AB中有且只有一個元素,則實數a的值為_______.14.已知集合,,則________.15.函數的定義域是___________.16.某班星期一共八節課(上午、下午各四節,其中下午最后兩節為社團活動),排課要求為:語文、數學、外語、物理、化學各排一節,從生物、歷史、地理、政治四科中選排一節.若數學必須安排在上午且與外語不相鄰(上午第四節和下午第一節不算相鄰),則不同的排法有__________種.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)小麗在同一城市開的2家店鋪各有2名員工.節假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無人休假,則調劑1人到該店維持營業,否則該店就停業.(1)求發生調劑現象的概率;(2)設營業店鋪數為X,求X的分布列和數學期望.18.(12分)某學校為了解全校學生的體重情況,從全校學生中隨機抽取了100人的體重數據,得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計這100人體重數據的平均值和樣本方差;(結果取整數,同一組中的數據用該組區間的中點值作代表)(2)從全校學生中隨機抽取3名學生,記為體重在的人數,求的分布列和數學期望;(3)由頻率分布直方圖可以認為,該校學生的體重近似服從正態分布.若,則認為該校學生的體重是正常的.試判斷該校學生的體重是否正常?并說明理由.19.(12分)已知函數.(1)解不等式;(2)若函數的最小值為,求的最小值.20.(12分)等差數列的公差為2,分別等于等比數列的第2項,第3項,第4項.(1)求數列和的通項公式;(2)若數列滿足,求數列的前2020項的和.21.(12分)在平面直角坐標系中,橢圓:的右焦點為(,為常數),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點.⑴求橢圓的標準方程;⑵若時,,求實數;⑶試問的值是否與的大小無關,并證明你的結論.22.(10分)已知函數.(1)當時,求的單調區間;(2)若函數有兩個極值點,,且,為的導函數,設,求的取值范圍,并求取到最小值時所對應的的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
需結合拋物線第一定義和圖形,得為等腰三角形,設準線與軸的交點為,過點作,再由三角函數定義和幾何關系分別表示轉化出,,結合比值與正切二倍角公式化簡即可【詳解】如圖,設準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質,三角函數的性質,數形結合思想,轉化與化歸思想,屬于中檔題2.A【解析】
根據平面平面,四邊形為等腰梯形,則球心在過的中點的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據已知量求解即可.【詳解】依題意如圖所示:取的中點,則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設四棱錐的外接球半徑為,則,而,所以,故選:A.【點睛】本題考查組合體、球,還考查空間想象能力以及數形結合的思想,屬于難題.3.A【解析】分析:設,則,把用表示,然后令,由導數求得的最小值.詳解:設,則,,,∴,令,則,,∴是上的增函數,又,∴當時,,當時,,即在上單調遞減,在上單調遞增,是極小值也是最小值,,∴的最小值是.故選A.點睛:本題易錯選B,利用導數法求函數的最值,解題時學生可能不會將其中求的最小值問題,通過構造新函數,轉化為求函數的最小值問題,另外通過二次求導,確定函數的單調區間也很容易出錯.4.B【解析】
,有,,三種情形,用中的系數乘以中的系數,然后相加可得.【詳解】當時,的展開式中的系數為.當,時,系數為;當,時,系數為;當,時,系數為;故滿足的的系數之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關鍵.5.D【解析】
根據等差數列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數列的計算,意在考查學生的計算能力.6.D【解析】
因為雙曲線分左右支,所以,根據雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質,意在考查學生對這些知識的理解掌握水平.7.A【解析】
選取中間值和,利用對數函數,和指數函數的單調性即可求解.【詳解】因為對數函數在上單調遞增,所以,因為對數函數在上單調遞減,所以,因為指數函數在上單調遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數函數和指數函數的單調性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、常考題型.8.B【解析】
易得,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數的乘法、除法運算,考查學生的基本計算能力,是一道容易題.9.B【解析】
設,,利用復數幾何意義計算.【詳解】設,由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復數模的最大值,其實本題可以利用不等式來解決.10.B【解析】
利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點睛】本題主要考查特稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎題.11.C【解析】
根據“被5除余3且被7除余2的正整數”,可得這些數構成等差數列,然后根據等差數列的前項和公式,可得結果.【詳解】被5除余3且被7除余2的正整數構成首項為23,公差為的等差數列,記數列則令,解得.故該數列各項之和為.故選:C.【點睛】本題考查等差數列的應用,屬基礎題。12.C【解析】
根據題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數,由分步計數原理計算可得答案.【詳解】解:根據題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應用,涉及分步計數原理問題,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
利用AB中有且只有一個元素,可得,可求實數a的值.【詳解】由題意AB中有且只有一個元素,所以,即.故答案為:.【點睛】本題主要考查集合的交集運算,集合交集的運算本質是存同去異,側重考查數學運算的核心素養.14.【解析】
利用交集定義直接求解.【詳解】解:集合奇數,偶數,.故答案為:.【點睛】本題考查交集的求法,考查交集定義等基礎知識,考查運算求解能力,屬于基礎題.15.【解析】
由于偶次根式中被開方數非負,對數的真數要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點睛】此題考查函數定義域的求法,屬于基礎題.16.1344【解析】
分四種情況討論即可【詳解】解:數學排在第一節時有:數學排在第二節時有:數學排在第三節時有:數學排在第四節時有:所以共有1344種故答案為:1344【點睛】考查排列、組合的應用,注意分類討論,做到不重不漏;基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析,【解析】
(1)根據題意設出事件,列出概率,運用公式求解;(2)由題得,X的所有可能取值為,根據(1)和變量對應的事件,可得變量對應的概率,即可得分布列和期望值.【詳解】(1)記2家小店分別為A,B,A店有i人休假記為事件(,1,2),B店有i人,休假記為事件(,1,2),發生調劑現象的概率為P.則,,.所以.答:發生調劑現象的概率為.(2)依題意,X的所有可能取值為0,1,2.則,,.所以X的分布表為:X012P所以.【點睛】本題是一道考查概率和期望的常考題型.18.(1)60;25(2)見解析,2.1(3)可以認為該校學生的體重是正常的.見解析【解析】
(1)根據頻率分布直方圖可求出平均值和樣本方差;(2)由題意知服從二項分布,分別求出,,,,進而可求出分布列以及數學期望;(3)由第一問可知服從正態分布,繼而可求出的值,從而可判斷.【詳解】解:(1)(2)由已知可得從全校學生中隨機抽取1人,體重在的概率為0.7.隨機拍取3人,相當于3次獨立重復實驗,隨機交量服從二項分布,則,,,,所以的分布列為:01230.0270.1890.4410.343數學期望(3)由題意知服從正態分布,則,所以可以認為該校學生的體重是正常的.【點睛】本題考查了由頻率分布直方圖求進行數據估計,考查了二項分布,考查了正態分布.注意,統計類問題,如果題目中沒有特殊說明,則求出數據的精度和題目中數據的小數后位數相同.19.(1)(2)【解析】
(1)用分類討論思想去掉絕對值符號后可解不等式;(2)由(1)得的最小值為4,則由,代換后用基本不等式可得最小值.【詳解】解:(1)討論:當時,,即,此時無解;當時,;當時,.所求不等式的解集為(2)分析知,函數的最小值為4,當且僅當時等號成立.的最小值為4.【點睛】本題考查解絕對值不等式,考查用基本不等式求最小值.解絕對值不等式的方法是分類討論思想.20.(1),;(2).【解析】
(1)根據題意同時利用等差、等比數列的通項公式即可求得數列和的通項公式;(2)求出數列的通項公式,再利用錯位相減法即可求得數列的前2020項的和.【詳解】(1)依題意得:,所以,所以解得設等比數列的公比為,所以又(2)由(1)知,因為①當時,②由①②得,,即,又當時,不滿足上式,.數列的前2020項的和設③,則④,由③④得:,所以,所以.【點睛】本題考查等差數列和等比數列的通項公式、性質,錯位相減法求和,考查學生的邏輯推理能力,化歸與轉化能力及綜合運用數學知識解決問題的能力.考查的核心素養是邏輯推理與數學運算.是中檔題.21.(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數法可得,橢圓方程為;(2)我們要知道=的條件應用,在于直線交橢圓兩交點M,N的橫坐標為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時,由(2)得;另一方面,當斜率存在即時,可設直線的斜率為,得直線MN:,聯立直線與橢圓方程,利用韋達定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關試題解析:(1),得:,橢圓方程為(2)當時,,得:,于是當=時,,于是,得到(3)①當=時,由(2)知②當時,設直線的斜率為,,則直線MN:聯立橢圓方程有,/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年綠色家居可持續發展目標(SDGs)實踐與智能家居發展報告
- 危化品碼頭安全管理制度
- 學校網評員工作管理制度
- 月度會議制度管理制度
- ups電池維修管理制度
- 智能餐廳日常管理制度
- 培訓公司組織與管理制度
- 公司放松休息室管理制度
- 保潔領班考試題及答案
- 安全運行考試題及答案
- 《西方經濟學(本)》形考任務(1-6)試題答案解析
- 《消防應急疏散培訓》課件
- 分公司特種設備使用安全風險日管控、周排查、月調度管理制度特種設備安全風險管控清單記錄表等
- 甲狀腺癌手術治療護理查房
- 2024-2030年中國礦用錨桿行業發展現狀需求分析報告
- 護士角色轉換與適應
- 2024年-2025年農作物植保員職業技能考試題及答案
- 拍賣合同模板三篇
- 2023北京西城區初二期末(下)物理試卷及答案
- 2023-2024學年山東省煙臺市高一下學期期中生物試題(解析版)
- 淺談機械設計制造及其自動化在飛機發動機中的應用
評論
0/150
提交評論