2023屆廣東省佛山市南海區獅山石門高級中學高三數學第一學期期末經典試題含解析_第1頁
2023屆廣東省佛山市南海區獅山石門高級中學高三數學第一學期期末經典試題含解析_第2頁
2023屆廣東省佛山市南海區獅山石門高級中學高三數學第一學期期末經典試題含解析_第3頁
2023屆廣東省佛山市南海區獅山石門高級中學高三數學第一學期期末經典試題含解析_第4頁
2023屆廣東省佛山市南海區獅山石門高級中學高三數學第一學期期末經典試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.2.函數(且)的圖象可能為()A. B. C. D.3.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內到兩定點距離之比為常數的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.4.設等差數列的前項和為,若,,則()A.21 B.22 C.11 D.125.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.6.點為棱長是2的正方體的內切球球面上的動點,點為的中點,若滿足,則動點的軌跡的長度為()A. B. C. D.7.若的展開式中的系數為150,則()A.20 B.15 C.10 D.258.拋擲一枚質地均勻的硬幣,每次正反面出現的概率相同,連續拋擲5次,至少連續出現3次正面朝上的概率是()A. B. C. D.9.已知定義在上的函數滿足,且在上是增函數,不等式對于恒成立,則的取值范圍是A. B. C. D.10.已知函數,其中,記函數滿足條件:為事件,則事件發生的概率為A. B.C. D.11.已知函數是定義在上的偶函數,且在上單調遞增,則()A. B.C. D.12.已知是的共軛復數,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是拋物線的準線上一點,F為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F是它的一個焦點,且過P點,當m取最小值時,雙曲線C的離心率為______.14.若函數(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.15.若滿足約束條件,則的最小值是_________,最大值是_________.16.若展開式中的常數項為240,則實數的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)判斷函數在區間上的零點的個數;(2)記函數在區間上的兩個極值點分別為、,求證:.18.(12分)已知直線的參數方程為(,為參數),曲線的極坐標方程為.(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;(2)若直線經過點,求直線被曲線截得的線段的長.19.(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)已知外接圓半徑,求的周長.20.(12分)本小題滿分14分)已知曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數方程為(為參數),求直線被曲線截得的線段的長度21.(12分)設函數.(1)若函數在是單調遞減的函數,求實數的取值范圍;(2)若,證明:.22.(10分)已知函數,(1)證明:在區間單調遞減;(2)證明:對任意的有.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據指數函數的單調性,結合特殊值進行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當m,n時,檢驗可得,A、C、D都不正確,故選:B.【點睛】此題考查根據指數冪的大小關系判斷參數的大小,根據參數的大小判定指數冪或對數的大小關系,需要熟練掌握指數函數和對數函數的性質,結合特值法得出選項.2、D【解析】因為,故函數是奇函數,所以排除A,B;取,則,故選D.考點:1.函數的基本性質;2.函數的圖象.3、A【解析】

根據平面內兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數形結合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應用,還考查了數形結合的思想和運算求解的能力,屬于中檔題.4、A【解析】

由題意知成等差數列,結合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數列,可知也成等差數列,所以,即,解得.故選:A.【點睛】本題考查了等差數列的性質,考查了等差中項.對于等差數列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結合等差數列性質,可使得計算量大大減少.5、D【解析】

設非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎題.6、C【解析】

設的中點為,利用正方形和正方體的性質,結合線面垂直的判定定理可以證明出平面,這樣可以確定動點的軌跡,最后求出動點的軌跡的長度.【詳解】設的中點為,連接,因此有,而,而平面,,因此有平面,所以動點的軌跡平面與正方體的內切球的交線.正方體的棱長為2,所以內切球的半徑為,建立如下圖所示的以為坐標原點的空間直角坐標系:因此有,設平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動點的軌跡的長度為.故選:C【點睛】本題考查了線面垂直的判定定理的應用,考查了立體幾何中軌跡問題,考查了球截面的性質,考查了空間想象能力和數學運算能力.7、C【解析】

通過二項式展開式的通項分析得到,即得解.【詳解】由已知得,故當時,,于是有,則.故選:C【點睛】本題主要考查二項式展開式的通項和系數問題,意在考查學生對這些知識的理解掌握水平.8、A【解析】

首先求出樣本空間樣本點為個,再利用分類計數原理求出三個正面向上為連續的3個“1”的樣本點個數,再求出重復數量,可得事件的樣本點數,根據古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復,重復數量為,事件的樣本點數為:個.故不同的樣本點數為8個,.故選:A【點睛】本題考查了分類計數原理與分步計數原理,古典概型的概率計算公式,屬于基礎題9、A【解析】

根據奇偶性定義和性質可判斷出函數為偶函數且在上是減函數,由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結果.【詳解】為定義在上的偶函數,圖象關于軸對稱又在上是增函數在上是減函數,即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數的奇偶性和單調性求解函數不等式的問題,涉及到恒成立問題的求解;解題關鍵是能夠利用函數單調性將函數值的大小關系轉化為自變量的大小關系,從而利用分離變量法來處理恒成立問題.10、D【解析】

由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.11、C【解析】

根據題意,由函數的奇偶性可得,,又由,結合函數的單調性分析可得答案.【詳解】根據題意,函數是定義在上的偶函數,則,,有,又由在上單調遞增,則有,故選C.【點睛】本題主要考查函數的奇偶性與單調性的綜合應用,注意函數奇偶性的應用,屬于基礎題.12、A【解析】

先利用復數的除法運算法則求出的值,再利用共軛復數的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點睛】本題主要考查了復數代數形式的乘除運算,考查了共軛復數的概念,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由點坐標可確定拋物線方程,由此得到坐標和準線方程;過作準線的垂線,垂足為,根據拋物線定義可得,可知當直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標,根據雙曲線定義得到實軸長,結合焦距可求得所求的離心率.【詳解】是拋物線準線上的一點拋物線方程為,準線方程為過作準線的垂線,垂足為,則設直線的傾斜角為,則當取得最小值時,最小,此時直線與拋物線相切設直線的方程為,代入得:,解得:或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:【點睛】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標準方程的應用、雙曲線定義的應用;關鍵是能夠確定當取得最小值時,直線與拋物線相切,進而根據拋物線切線方程的求解方法求得點坐標.14、(1,)【解析】

在定義域[m,n]上的值域是[m2,n2],等價轉化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,.故答案為:.【點睛】本題主要考查導數的幾何意義,把已知條件進行等價轉化是求解的關鍵,側重考查數學抽象的核心素養.15、06【解析】

作不等式組對應的平面區域,利用目標函數的幾何意義,即可求出結果.【詳解】作出可行域,如圖中的陰影部分:求的最值,即求直線在軸上的截距最小和最大時,當直線過點時,軸上截距最大,即z取最小值,.當直線過點時,軸上截距最小,即z取最大值,.故答案為:0;6.【點睛】本題主要考查了線性規劃中的最值問題,利用數形結合是解決問題的基本方法,屬于中檔題.16、-3【解析】

依題意可得二項式展開式的常數項為即可得到方程,解得即可;【詳解】解:∵二項式的展開式中的常數項為,∴解得.故答案為:【點睛】本題考查二項式展開式中常數項的計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(1)利用導數分析函數在區間上的單調性與極值,結合零點存在定理可得出結論;(2)設函數的極大值點和極小值點分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數的單調性推導出,再利用正弦函數的單調性可得出結論.【詳解】(1),,,當時,,,,則函數在上單調遞增;當時,,,,則函數在上單調遞減;當時,,,,則函數在上單調遞增.,,,,.所以,函數在與不存在零點,在區間和上各存在一個零點.綜上所述,函數在區間上的零點的個數為;(2),.由(1)得,在區間與上存在零點,所以,函數在區間與上各存在一個極值點、,且,,且滿足即,,,又,即,,,,,由在上單調遞增,得,再由在上單調遞減,得,即.【點睛】本題考查利用導數研究函數的零點個數問題,同時也考查了利用導數證明不等式,考查分析問題和解決問題的能力,屬于難題.18、(1)曲線表示的是焦點為,準線為的拋物線;(2)8.【解析】試題分析:(1)將曲線的極坐標方程為兩邊同時乘以,利用極坐標與直角坐標之間的關系即可得出其直角坐標方程;(2)由直線經過點,可得的值,再將直線的參數方程代入曲線的標準方程,由直線參數方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即,∴曲線表示的是焦點為,準線為的拋物線.(2)將代入,得,∴,∵,∴,∴直線的參數方程為(為參數).將直線的參數方程代入得,由直線參數方程的幾何意義可知,.19、(1)(2)3+3【解析】

(1)利用余弦的二倍角公式和同角三角函數關系式化簡整理并結合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長.【詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長a+b+c=3+3.【點睛】/r

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論