




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,在中,,則的長度為A.1 B. C. D.2.將拋物線向左平移3個單位長度,再向上平移5個單位長度,得到的拋物線的表達式為()A. B.C. D.3.如圖,矩形的面積為4,反比例函數(shù)()的圖象的一支經(jīng)過矩形對角線的交點,則該反比例函數(shù)的解析式是()A. B. C. D.4.如圖,P為⊙O外一點,PA、PB分別切⊙O于點A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.105.在70周年國慶閱兵式上有兩輛閱兵車的車牌號如圖所示(每輛閱兵車的車牌號含7位數(shù)字或字母),則“9”這個數(shù)字在這兩輛車牌號中出現(xiàn)的概率為()A. B. C. D.6.在反比例函數(shù)圖像的每一條曲線上,y都隨x的增大而增大,則b的取值范圍是()A.b=3 B. C. D.7.如圖,已知四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,EC與⊙O相切于點C,∠ECB=35°,則∠D的度數(shù)是()A.145° B.125° C.90° D.80°8.如圖,將繞點順時針旋轉(zhuǎn),得到,且點在上,下列說法錯誤的是()A.平分 B. C. D.9.方程2x(x﹣5)=6(x﹣5)的根是()A.x=5 B.x=﹣5 C.=﹣5,=3 D.=5,=310.對于題目“如圖,在中,是邊上一動點,于點,點在點的右側(cè),且,連接,從點出發(fā),沿方向運動,當(dāng)?shù)竭_點時,停止運動,在整個運動過程中,求陰影部分面積的大小變化的情況"甲的結(jié)果是先增大后減小,乙的結(jié)果是先減小后增大,其中()A.甲的結(jié)果正確 B.乙的結(jié)果正確C.甲、乙的結(jié)果都不正確,應(yīng)是一直增大 D.甲、乙的結(jié)果都不正確,應(yīng)是一直減小二、填空題(每小題3分,共24分)11.有兩名學(xué)員小林和小明練習(xí)射擊,第一輪10槍打完后兩人打靶的環(huán)數(shù)如圖所示,通常新手的成績不太穩(wěn)定,那么根據(jù)圖中的信息,估計小林和小明兩人中新手是_______.12.對于任意非零實數(shù)a、b,定義運算“”,使下列式子成立:,,,,…,則ab=.13.如圖,在△ABC中,D、E、F分別在AB、AC、BC上,DE∥BC,EF∥AB,AD:BD=5:3,CF=6,則DE的長為_____.14.已知(x、y、z均不為零),則_____________.15.如圖,把△ABC繞點C順時針旋轉(zhuǎn)得到△A'B'C',此時A′B′⊥AC于D,已知∠A=50°,則∠B′CB的度數(shù)是_____°.16.如圖,將一張畫有內(nèi)切圓⊙P的直角三角形紙片AOB置于平面直角坐標(biāo)系中,已知點A(0,3),B(4,0),⊙P與三角形各邊相切的切點分別為D、E、F.將直角三角形紙片繞其右下角的頂點依次按順時針方向旋轉(zhuǎn),第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置,…,則直角三角形紙片旋轉(zhuǎn)2018次后,它的內(nèi)切圓圓心P的坐標(biāo)為____.17.如圖,E是?ABCD的BC邊的中點,BD與AE相交于F,則△ABF與四邊形ECDF的面積之比等于_____.18.在陽光下,高6m的旗桿在水平地面上的影子長為4m,此時測得附近一個建筑物的影子長為16m,則該建筑物的高度是_____m.三、解答題(共66分)19.(10分)如圖,已知點B的坐標(biāo)是(-2,0),點C的坐標(biāo)是(8,0),以線段BC為直徑作⊙A,交y軸的正半軸于點D,過B、C、D三點作拋物線.(1)求拋物線的解析式;(2)連結(jié)BD,CD,點E是BD延長線上一點,∠CDE的角平分線DF交⊙A于點F,連結(jié)CF,在直線BE上找一點P,使得△PFC的周長最小,并求出此時點P的坐標(biāo);(3)在(2)的條件下,拋物線上是否存在點G,使得∠GFC=∠DCF,若存在,請直接寫出點G的坐標(biāo);若不存在,請說明理由.20.(6分)如圖,與交于點,過點,交與點,交與點F,,,,.(1)求證:(2)若,求證:21.(6分)如圖,P是正方形ABCD的邊CD上一點,∠BAP的平分線交BC于點Q,求證:AP=DP+BQ.22.(8分)自貢是“鹽之都,龍之鄉(xiāng),燈之城”,文化底蘊深厚.為弘揚鄉(xiāng)土特色文化,某校就同學(xué)們對“自貢歷史文化”的了解程度進行隨機抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖:⑴本次共調(diào)查名學(xué)生,條形統(tǒng)計圖中=;⑵若該校共有學(xué)生1200名,則該校約有名學(xué)生不了解“自貢歷史文化”;⑶調(diào)查結(jié)果中,該校九年級(2)班學(xué)生中了解程度為“很了解”的同學(xué)進行測試,發(fā)現(xiàn)其中共有四名同學(xué)相當(dāng)優(yōu)秀,它們是三名男生,一名女生,現(xiàn)準(zhǔn)備從這四名同學(xué)中隨機抽取兩人去市里參加“自貢歷史文化”知識競賽,用樹狀圖或列表法,求恰好抽取一男生一女生的概率.23.(8分)在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用26m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)BC=xm.(1)若矩形花園ABCD的面積為165m2,求x的值;(2)若在P處有一棵樹,樹中心P與墻CD,AD的距離分別是13m和6m,要將這棵樹圍在花園內(nèi)(考慮到樹以后的生長,籬笆圍矩形ABCD時,需將以P為圓心,1為半徑的圓形區(qū)域圍在內(nèi)),求矩形花園ABCD面積S的最大值.24.(8分)如圖,在?ABCD中,作對角線BD的垂直平分線EF,垂足為O,分別交AD,BC于E,F(xiàn),連接BE,DF.求證:四邊形BFDE是菱形.25.(10分)知識改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大地方便了人們的出行.中國北斗導(dǎo)航已經(jīng)全球組網(wǎng),它已經(jīng)走進了人們的日常生活.如圖,某校周末組織學(xué)生利用導(dǎo)航到某地(用表示)開展社會實踐活動,車輛到達地后,發(fā)現(xiàn)地恰好在地的正北方向,且距離地8千米.導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至地,再沿北偏西45°方向行駛一段距離才能到達地.求兩地間的距離(結(jié)果精確到0.1千米).(參考數(shù)據(jù):)26.(10分)運城菖蒲酒產(chǎn)于山西垣曲.莒蒲灑遠在漢代就已名噪酒壇,為歷代帝王將相所喜愛,并被列為歷代御膳香醪.菖蒲酒在市場的銷售量會根據(jù)價格的變化而變化.菖蒲酒每瓶的成本價是元,某超市將售價定為元時,每天可以銷售瓶,若售價每降低元,每天即可多銷售瓶(售價不能高于元),若設(shè)每瓶降價元用含的代數(shù)式表示菖蒲酒每天的銷售量.每瓶菖蒲酒的售價定為多少元時每天獲取的利潤最大?最大利潤是多少?
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)已知條件得到,根據(jù)相似三角形的判定和性質(zhì)可得,即可得到結(jié)論.【詳解】解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,,∴,∴BC=4.故選:C.【點睛】本題考查了相似三角形的判定與性質(zhì),熟悉相似基本圖形掌握相似三角形的判定與性質(zhì)是解題關(guān)鍵.2、A【分析】易得新拋物線的頂點,根據(jù)頂點式及平移前后二次項的系數(shù)不變可得新拋物線的解析式.【詳解】原拋物線的頂點為(0,0),向左平移3個單位,再向上平移1個單位,那么新拋物線的頂點為(?3,1);可設(shè)新拋物線的解析式為y=?4(x?h)2+k,代入得:y=?4(x+3)2+1.故選:A.【點睛】本題主要考查的是函數(shù)圖象的平移,根據(jù)平移規(guī)律“左加右減,上加下減”利用頂點的變化確定圖形的變化是解題的關(guān)鍵.3、D【分析】過P點作PE⊥x軸于E,PF⊥y軸于F,根據(jù)矩形的性質(zhì)得S矩形OEPF=S矩形OACB=1,然后根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義求解.【詳解】過P點作PE⊥x軸于E,PF⊥y軸于F,如圖所示:
∵四邊形OACB為矩形,點P為對角線的交點,
∴S矩形OEPF=S矩形OACB=×4=1.
∴k=-1,
所以反比例函數(shù)的解析式是:.故選:D【點睛】考查了反比例函數(shù)的比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.4、C【解析】由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【詳解】∵PA、PB分別切⊙O于點A、B,CD切⊙O于點E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.【點睛】本題主要考查切線的性質(zhì),利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關(guān)鍵.5、B【分析】兩輛閱兵車的車牌號共含14位數(shù)字或字母,其中數(shù)字9出現(xiàn)了3次,根據(jù)概率公式即可求解.【詳解】解:兩輛閱兵車的車牌號共含14位數(shù)字或字母,其中數(shù)字9出現(xiàn)了3次,所以“9”這個數(shù)字在這兩輛車牌號中出現(xiàn)的概率為.故選:B.【點睛】本題考查了概率的計算,掌握概率計算公式是解題關(guān)鍵.6、C【分析】由反比例函數(shù)的圖象的每一條曲線上,y都隨x的增大而增大,可得3-b<0,進而求出答案,作出選擇.【詳解】解:∵反比例函數(shù)的圖象的每一條曲線上,y都隨x的增大而增大,∴3-b<0,∴b>3,故選C.【點睛】考查反比例函數(shù)的性質(zhì)和一元一次不等式的解法,掌握反比例函數(shù)的性質(zhì)是解決問題的關(guān)鍵.7、B【解析】試題解析:連接∵EC與相切,故選B.點睛:圓內(nèi)接四邊形的對角互補.8、C【分析】由題意根據(jù)旋轉(zhuǎn)變換的性質(zhì),進行依次分析即可判斷.【詳解】解:解:∵△ABC繞點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角是∠BAC,∴AB的對應(yīng)邊為AD,BC的對應(yīng)邊為DE,∠BAC對應(yīng)角為∠DAE,∴AB=AD,DE=BC,∠BAC=∠DAE即平分,∴A,B,D選項正確,C選項不正確.故選:C.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前后的兩個圖形全等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.9、D【分析】利用因式分解法求解可得.【詳解】解:∵2x(x﹣5)=6(x﹣5)2x(x﹣5)﹣6(x﹣5)=0,∴(x﹣5)(2x﹣6)=0,則x﹣5=0或2x﹣6=0,解得x=5或x=3,故選:D.【點睛】本題考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點選擇合適、簡便的方法是解題的關(guān)鍵.10、B【分析】設(shè)PD=x,AB邊上的高為h,求出AD、h,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題即可.【詳解】解:在中,∵,∴,設(shè),邊上的高為,則.∵,∴,∴,∴,∴,∴當(dāng)時,的值隨的增大而減小,當(dāng)時,的值隨的增大而增大,∴乙的結(jié)果正確.故選B.【點睛】本題考查相似三角形的判定和性質(zhì),動點問題的函數(shù)圖象,三角形面積,勾股定理等知識,解題的關(guān)鍵是構(gòu)建二次函數(shù),學(xué)會利用二次函數(shù)的增減性解決問題,屬于中考常考題型.二、填空題(每小題3分,共24分)11、小林【詳解】觀察圖形可知,小林的成績波動比較大,故小林是新手.
故答案是:小林.12、【解析】試題分析:根據(jù)已知數(shù)字等式得出變化規(guī)律,即可得出答案:∵,,,,…,∴。13、1【分析】根據(jù)平行線分線段成比例定理得到,證明△AED∽△ECF,根據(jù)相似三角形的性質(zhì)列出比例式,代入計算得到答案.【詳解】解:∵DE∥BC,∴,∠AED=∠C,∵EF∥AB,∴∠CEF=∠A,又∠AED=∠C,∴△AED∽△ECF,∴,即,解得,DE=1,故答案為:1.【點睛】本題考查的是相似三角形的判定和性質(zhì)、平行線分線段成比例定理,掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.14、【分析】根據(jù)題意,可設(shè)x=5k,y=4k,z=3k,將其代入分式即可.【詳解】解:∵∴設(shè)x=5k,y=4k,z=3k,將其代入分式中得:.
故答案為.【點睛】本題考查了比例的性質(zhì),解此類題可根據(jù)分式的基本性質(zhì)先用未知數(shù)k表示出x,y,z,再代入計算.15、1【分析】由旋轉(zhuǎn)的性質(zhì)可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性質(zhì)可求∠ACA'=1°=∠B′CB.【詳解】解:∵把△ABC繞點C順時針旋轉(zhuǎn)得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案為1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.16、(8075,1)【分析】旋轉(zhuǎn)后的三角形內(nèi)切圓的圓心分別為P1,P2,P3,過圓心作垂直于x軸,分別交x軸于點為E1,E2,E3,根據(jù)已知A(0,3),B(4,0),可求得AB長度和三角形內(nèi)切圓的半徑,依次求出OE1,OE2,OE3,OE4,OE5,OE6的長,找到規(guī)律,求得OE2018的長,即可求得直角三角形紙片旋轉(zhuǎn)2018次后,它的內(nèi)切圓圓心P的坐標(biāo).【詳解】如圖所示,旋轉(zhuǎn)后的三角形內(nèi)切圓的圓心分別為P1,P2,P3,過圓心作垂直于x軸,分別交x軸于點為E1,E2,E3設(shè)三角形內(nèi)切圓的半徑為r∵△AOB是直角三角形,A(0,3),B(4,0)∴∵⊙P是△AOB的內(nèi)切圓∴即∴r=1∴BE=BF=OB-OE=4-1=3∵△BO1A1是△AOB繞其B點按順時針方向旋轉(zhuǎn)得到∴BE1=BF=3∴OE1=4+3∵A1E2=3-1=2∴OE2=4+5+2∴OE3=4+5+3+1同理可推得OE4=4+5+3+4+3,OE5=4+5+3+4+5+2,OE6=4+5+3+4+5+3+12018÷3=6722OE2018=672×(4+5+3)+(4+5+2)=8075三角形在翻折后內(nèi)切圓的縱坐標(biāo)不變∴P2018(8075,1)故答案為:(8075,1)【點睛】本題是坐標(biāo)的規(guī)律題,考查了圖形翻折的性質(zhì),翻轉(zhuǎn)后圖形對應(yīng)的邊和角不變,本題應(yīng)用了三角形內(nèi)切圓的性質(zhì),及三角形內(nèi)切圓半徑的求法,用勾股定理解直角三角形等知識.17、【分析】△ABF和△ABE等高,先判斷出,進而算出,△ABF和△AFD等高,得,由,即可解出.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,又∵E是?ABCD的BC邊的中點,∴,∵△ABE和△ABF同高,∴,∴S△ABE=S△ABF,設(shè)?ABCD中,BC邊上的高為h,∵S△ABE=×BE×h,S?ABCD=BC×h=2×BE×h,∴S?ABCD=4S△ABE=4×S△ABF=6S△ABF,∵△ABF與△ADF等高,∴,∴S△ADF=2S△ABF,∴S四邊形ECDF=S?ABCD﹣S△ABE﹣S△ADF=S△ABF,∴,故答案為:.【點睛】本題考查了相似三角的面積類題型,運用了線段成比例求面積之間的比值,靈活運用線段比是解決本題的關(guān)鍵.18、1【分析】先設(shè)建筑物的高為h米,再根據(jù)同一時刻物高與影長成正比列出關(guān)系式求出h的值即可.【詳解】解:設(shè)建筑物的高為h米,則=,解得h=1.故答案為:1.【點睛】本題考查的是相似三角形的應(yīng)用,熟知同一時刻物高與影長成正比是解答此題的關(guān)鍵.三、解答題(共66分)19、(1);(2);(3)【分析】(1)由BC是直徑證得∠OCD=∠BDO,從而得到△BOD∽△DOC,根據(jù)線段成比例求出OD的長,設(shè)拋物線解析式為y=a(x+2)(x-8),將點D坐標(biāo)代入即可得到解析式;(2)利用角平分線求出,得到,從而得出點F的坐標(biāo)(3,5),再延長延長CD至點,可使,得到(-8,8),求出F的解析式,與直線BD的交點坐標(biāo)即為點P,此時△PFC的周長最小;(3)先假設(shè)存在,①利用弧等圓周角相等把點D、F繞點A順時針旋轉(zhuǎn)90,使點F與點B重合,點G與點Q重合,則Q1(7,3),符合,求出直線FQ1的解析式,與拋物線的交點即為點G1,②根據(jù)對稱性得到點Q2的坐標(biāo),再求出直線FQ2的解析式,與拋物線的交點即為點G2,由此證得存在點G.【詳解】(1)∵以線段BC為直徑作⊙A,交y軸的正半軸于點D,∴∠BDO+∠ODC=90,∵∠OCD+∠ODC=90,∴∠OCD=∠BDO,∵∠DOC=∠DOB=90,∴△BOD∽△DOC,∴,∵B(-2,0),C(8,0),∴,解得OD=4(負(fù)值舍去),∴D(0,4)設(shè)拋物線解析式為y=a(x+2)(x-8),∴4=a(0+2)(0-8),解得a=,∴二次函數(shù)的解析式為y=(x+2)(x-8),即.(2)∵BC為⊙A的直徑,且B(-2,0),C(8,0),∴OA=3,A(3,0),∴點E是BD延長線上一點,∠CDE的角平分線DF交⊙A于點F,∴,連接AF,則,∵OA=3,AF=5∴F(3,5)∵∠CDB=90,∴延長CD至點,可使,∴(-8,8),連接F叫BE于點P,再連接PF、PC,此時△PFC的周長最短,解得F的解析式為,BD的解析式為y=2x+4,可得交點P.(3)存在;假設(shè)存在點G,使∠GFC=∠DCF,設(shè)射線GF交⊙A于點Q,①∵A(3,0),F(3,5),C(8,0),D(0,4),∴把點D、F繞點A順時針旋轉(zhuǎn)90,使點F與點B重合,點G與點Q重合,則Q1(7,3),符合,∵F(3,5),Q1(7,3),∴直線FQ1的解析式為,解,得,(舍去),∴G1;②Q1關(guān)于x軸對稱點Q2(7,-3),符合,∵F(3,5),Q2(7,3),∴直線FQ2的解析式為y=-2x+11,解,得,(舍去),∴G2綜上,存在點G或,使得∠GFC=∠DCF.【點睛】此題是二次函數(shù)的綜合題,(1)考查待定系數(shù)法求函數(shù)解析式,需要先證明三角形相似,由此求得線段OD的長,才能求出解析式;(2)考查最短路徑問題,此問的關(guān)鍵是求出點F的坐標(biāo),由此延長CD至點,使,得到點的坐標(biāo)從而求得交點P的坐標(biāo);③是難點,根據(jù)等弧所對的圓心角相等將弧DF旋轉(zhuǎn),求出與圓的交點Q1坐標(biāo),從而求出直線與拋物線的交點坐標(biāo)即點G的坐標(biāo);再根據(jù)對稱性求得點Q2的坐標(biāo),再求出直線與拋物線的交點G的坐標(biāo).20、(1)見解析;(2)見解析【分析】(1)根據(jù)兩邊對應(yīng)成比例且夾角相等的兩個三角形相似可證△AOB∽△COD,從而可證∠A=∠D;(2)證明△AOE∽△DOF,△BOE∽△COF,然后根據(jù)相似三角形的對應(yīng)邊成比例解答即可.【詳解】證明:(1)∵,,,,∴,∵∠AOB=∠COD,∴△AOB∽△COD,∴∠A=∠D;(2)∵∠A=∠D,∴AB∥CD,∴△AOE∽△DOF,△BOE∽△COF,∴,,∴,∵,∴【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,靈活運用相似三角形的性質(zhì)進行幾何證明.21、證明見解析.【解析】試題分析:根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠E=∠AQB,∠EAD=∠QAB,進而得出∠PAE=∠E,即可得出AP=PE=DP+DE=DP+BQ.試題解析:證明:將△ABQ繞A逆時針旋轉(zhuǎn)90°得到△ADE,由旋轉(zhuǎn)的性質(zhì)可得出∠E=∠AQB,∠EAD=∠QAB,又∵∠PAE=90°﹣∠PAQ=90°﹣∠BAQ=∠DAQ=∠AQB=∠E,在△PAE中,得AP=PE=DP+DE=DP+BQ.點睛:此題主要考查了旋轉(zhuǎn)的性質(zhì),根據(jù)已知得出PE=DP+DE是解題關(guān)鍵.22、(1)60,18;⑵240;⑶.【分析】(1)根據(jù)了解很少的有24人,占40%,即可求得總?cè)藬?shù);利用調(diào)查的總?cè)藬?shù)減去其它各項的人數(shù)即可求得m的值;(2)利用1200乘以不了解“自貢歷史文化”的人所占的比例即可求解;(3)列出表格即可求出恰好抽中一男生一女生的概率.【詳解】⑴.∵,故分別應(yīng)填:60,18.⑵.在樣本中“不了解”的占:,所以;故應(yīng)填:240.⑶.列表如下(也可以選擇“樹狀圖”,注意是“不放回”)由上表可知:共有12種可能,其“一男一女”的可能性有6種.∴(一男一女)=【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及求隨機事件的概率,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.23、(1)x的值為11m或15m;(2)花園面積S的最大值為168平方米.【分析】(1)直接利用矩形面積公式結(jié)合一元二次方程的解法即可求得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 3610.1-2019道路運輸車輛主動安全智能防控系統(tǒng)技術(shù)規(guī)范第1部分:平臺
- DB32/T 3562-2019橋梁結(jié)構(gòu)健康監(jiān)測系統(tǒng)設(shè)計規(guī)范
- DB31/T 968.2-2016全過程信用管理要求第2部分:行為清單編制指南
- DB31/T 820-2014肉鴿屠宰場防疫技術(shù)規(guī)范
- DB31/T 578-2011飼料中玉米赤霉醇類物質(zhì)的測定液相色譜-串聯(lián)質(zhì)譜法
- DB31/T 1419-2023醫(yī)療付費“一件事”應(yīng)用規(guī)范
- DB31/T 1384-2022城市綠地防雷通用技術(shù)要求
- DB31/T 1363-2022口腔綜合治療臺水路衛(wèi)生管理要求
- DB31/T 1299-2021電梯轎廂上行超速保護裝置現(xiàn)場試驗方法
- DB31/T 1266-2020乘用車自主緊急制動系統(tǒng)技術(shù)要求及測試方法
- 硅熱式風(fēng)速傳感器輸出穩(wěn)定性的多維度解析與優(yōu)化策略研究
- Brand KPIs for spirits Tito's Handmade Vodka in the United States-外文版培訓(xùn)課件(2025.2)
- 中華人民共和國保守國家秘密法實施條例
- 機票代理合作協(xié)議
- (完整版)鋼樓梯施工方案
- 裝飾裝修工程監(jiān)理細(xì)則詳解模板
- 高度近視黃斑劈裂的自然病程及進展因素課件
- 三峽庫區(qū)秭歸縣頭道河Ⅱ號滑坡防治工程地質(zhì)詳細(xì)勘查報告
- 三腔二囊管壓迫止血及護理課件
- GB∕T 20565-2022 鐵礦石和直接還原鐵 術(shù)語
- 動力電池和電機電控英語術(shù)語匯總
評論
0/150
提交評論