




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數,則()A., B.,C., D.,2.已知的部分圖象如圖所示,則的表達式是()A. B.C. D.3.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.4.已知復數是純虛數,其中是實數,則等于()A. B. C. D.5.若函數有且僅有一個零點,則實數的值為()A. B. C. D.6.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點,已知過與的平面與圓錐側面的交線是以為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點的距離等于()A. B.1 C. D.7.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①以為直徑的圓與拋物線準線相離;②直線與直線的斜率乘積為;③設過點,,的圓的圓心坐標為,半徑為,則.其中,所有正確判斷的序號是()A.①② B.①③ C.②③ D.①②③8.已知為實數集,,,則()A. B. C. D.9.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態分布(),若,則D.設是實數,“”是“”的充分不必要條件10.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.11.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.12.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.2017二、填空題:本題共4小題,每小題5分,共20分。13.若x,y滿足,則的最小值為________.14.已知隨機變量服從正態分布,若,則_________.15.已知數列滿足:點在直線上,若使、、構成等比數列,則______16.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數()(1)函數在點處的切線方程為,求函數的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數的取值范圍.18.(12分)已知.(1)若的解集為,求的值;(2)若對任意,不等式恒成立,求實數的取值范圍.19.(12分)已知動圓經過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標準方程;(2)設點的橫坐標為,,為圓與曲線的公共點,若直線的斜率,且,求的值.20.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.21.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.22.(10分)在平面直角坐標系xOy中,曲線l的參數方程為(為參數),以原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點的極坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據古典概型概率計算公式,計算出概率并求得數學期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數學期望的計算,屬于中檔題.2、D【解析】
由圖象求出以及函數的最小正周期的值,利用周期公式可求得的值,然后將點的坐標代入函數的解析式,結合的取值范圍求出的值,由此可得出函數的解析式.【詳解】由圖象可得,函數的最小正周期為,.將點代入函數的解析式得,得,,,則,,因此,.故選:D.【點睛】本題考查利用圖象求三角函數解析式,考查分析問題和解決問題的能力,屬于中等題.3、C【解析】
設出直線的方程,代入橢圓方程中消去y,根據判別式大于0求得t的范圍,進而利用弦長公式求得|AB|的表達式,利用t的范圍求得|AB|的最大值.【詳解】解:設直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點睛】本題主要考查了橢圓的應用,直線與橢圓的關系.常需要把直線與橢圓方程聯立,利用韋達定理,判別式找到解決問題的突破口.4、A【解析】
對復數進行化簡,由于為純虛數,則化簡后的復數形式中,實部為0,得到的值,從而得到復數.【詳解】因為為純虛數,所以,得所以.故選A項【點睛】本題考查復數的四則運算,純虛數的概念,屬于簡單題.5、D【解析】
推導出函數的圖象關于直線對稱,由題意得出,進而可求得實數的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數的圖象關于直線對稱.若函數的零點不為,則該函數的零點必成對出現,不合題意.所以,,即,解得或.①當時,令,得,作出函數與函數的圖象如下圖所示:此時,函數與函數的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數的零點個數求參數,考查函數圖象對稱性的應用,解答的關鍵就是推導出,在求出參數后要對參數的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.6、D【解析】
建立平面直角坐標系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點到圓錐頂點的距離.【詳解】將拋物線放入坐標系,如圖所示,∵,,,∴,設拋物線,代入點,可得∴焦點為,即焦點為中點,設焦點為,,,∴.故選:D【點睛】本小題考查圓錐曲線的概念,拋物線的性質,兩點間的距離等基礎知識;考查運算求解能力,空間想象能力,推理論證能力,應用意識.7、D【解析】
對于①,利用拋物線的定義,利用可判斷;對于②,設直線的方程為,與拋物線聯立,用坐標表示直線與直線的斜率乘積,即可判斷;對于③,將代入拋物線的方程可得,,從而,,利用韋達定理可得,再由,可用m表示,線段的中垂線與軸的交點(即圓心)橫坐標為,可得a,即可判斷.【詳解】如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以①正確.由題意可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據拋物線的對稱性可知,,兩點關于軸對稱,所以過點,,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(即圓心)橫坐標為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點睛】本題考查了拋物線的性質綜合,考查了學生綜合分析,轉化劃歸,數形結合,數學運算的能力,屬于較難題.8、C【解析】
求出集合,,,由此能求出.【詳解】為實數集,,,或,.故選:.【點睛】本題考查交集、補集的求法,考查交集、補集的性質等基礎知識,考查運算求解能力,是基礎題.9、D【解析】
由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態分布的性質可判斷選項C;或,利用集合間的包含關系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關的命題、正態分布、充分條件與必要條件等,是一道容易題.10、D【解析】
由雙曲線方程可得漸近線方程,根據傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據雙曲線漸近線傾斜角求解參數值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.11、B【解析】
根據函數單調性逐項判斷即可【詳解】對A,由正弦函數的單調性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數,且a>b,所以ca>cb,正確對C,因為y=xc為增函數,故,錯誤;對D,因為在為減函數,故,錯誤故選B.【點睛】本題考查了不等式的基本性質以及指數函數的單調性,屬基礎題.12、D【解析】
依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環.輸出1.選D.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】
先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點,代入即得。【詳解】作出不等式組表示的平面區域,如圖,令,則,作出直線,平移直線,由圖可得,當直線經過C點時,直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點睛】本題考查不含參數的線性規劃問題,是基礎題。14、0.4【解析】
因為隨機變量ζ服從正態分布,利用正態曲線的對稱性,即得解.【詳解】因為隨機變量ζ服從正態分布所以正態曲線關于對稱,所.【點睛】本題考查了正態分布曲線的對稱性在求概率中的應用,考查了學生概念理解,數形結合,數學運算的能力,屬于基礎題.15、13【解析】
根據點在直線上可求得,由等比中項的定義可構造方程求得結果.【詳解】在上,,成等比數列,,即,解得:.故答案為:.【點睛】本題考查根據三項成等比數列求解參數值的問題,涉及到等比中項的應用,屬于基礎題.16、【解析】
根據圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點睛】本題主要考查圓錐體的體積,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)極小值為,極大值為.(2)【解析】
(1)根據斜線的斜率即可求得參數,再對函數求導,即可求得函數的極值;(2)根據題意,對目標式進行變形,構造函數,根據是單調減函數,分離參數,求函數的最值即可求得結果.【詳解】(1)函數的定義域為,,,,可知,,解得,,可知在,時,,函數單調遞增,在時,,函數單調遞減,可知函數的極小值為,極大值為.(2)可以變形為,可得,可知函數在上單調遞減,,可得,設,,可知函數在單調遞減,,可知,可知參數的取值范圍為.【點睛】本題考查由切線的斜率求參數的值,以及對具體函數極值的求解,涉及構造函數法,以及利用導數求函數的值域;第二問的難點在于對目標式的變形,屬綜合性中檔題.18、(1);(2)【解析】
(1)利用兩邊平方法解含有絕對值的不等式,再根據根與系數的關系求出的值;(2)利用絕對值不等式求出的最小值,把不等式化為只含有的不等式,求出不等式解集即可.【詳解】(1)不等式,即兩邊平方整理得由題意知和是方程的兩個實數根即,解得(2)因為所以要使不等式恒成立,只需當時,,解得,即;當時,,解得,即;綜上所述,的取值范圍是【點睛】本題考查了含有絕對值的不等式解法與應用問題,也考查了分類討論思想,是中檔題.19、見解析【解析】
(1)設,則點到軸的距離為,因為圓被軸截得的弦長為,所以,又,所以,化簡可得,所以曲線的標準方程為.(2)設,,因為直線的斜率,所以可設直線的方程為,由及,消去可得,所以,,所以.設線段的中點為,點的縱坐標為,則,,所以直線的斜率為,所以,所以,所以.易得圓心到直線的距離,由圓經過點,可得,所以,整理可得,解得或,所以或,又,所以.20、(1)見解析;(2)【解析】
(Ⅰ)證明:過點作于點,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點是的中點,連結,則∴平面∴∥,∴四邊形是矩形設,得:,又∵,∴,從而,過作于點,則∴是與平面所成角∴,∴與平面所成角的正弦值為考點:面面垂直的性質定理;線面平行的判定定理;線面垂直的性質定理;直線與平面所成的角.點評:本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的常考題型,較難.本題也可以用向量法來做:用向量法解題的關鍵是;首先正確的建立空間直角坐標系,正確求解平面的一個法向量.注意計算要仔細、認真.≌21、(1)見解析;(2)見解析【解析】
(1)根據,分別是,的中點,即可證明,從而可證平面;(2)先根據為正三角形,且D是的中點,證出,再根據平面平面,得到平面,從而得到,結合,即可得證.【詳解】(1)∵,分別是,的中點∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點∴∵平面平面,且平面平面,平面∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 突發事件應對指南
- 類公共領域生成及其社會動員能力研究
- 心理輔導方案
- 噴涂車間管理制度
- 數字拜物教在拜物教批判理論視野下的研究
- 安全生產責任險條款人保
- 辦理安全生產許可證的公司
- 運動會方陣組織與策劃策略研究
- 安全生產知識考核要點
- 安全生產培訓要求有哪些
- 貴州省政務信息化項目需求報告(建設類模板)、信息化建設項目實施方案模板2026年版(新建、升級改造)
- 2025年昆明市事業單位招聘考試綜合類專業能力測試試卷(文秘類)真題解析
- 2025至2030中國特醫食品行業發展趨勢分析與未來投資戰略咨詢研究報告
- 2024建安杯信息通信建設行業安全競賽題庫
- 水利水電工程行業市場發展分析及發展前景與投資研究報告2025-2028版
- 血小板減少癥護理查房
- 浙江杭州市2024-2025學年高一下學期6月期末考試數學試題及答案
- 煤磨安全試題及答案
- 漸凍人麻醉處理要點
- 2025年中國郵政集團有限公司廣東省分公司人員招聘筆試備考試題及參考答案詳解1套
- 2025-2030中國全麥粉市場銷售狀況與競爭前景分析報告
評論
0/150
提交評論