




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義:表示不等式的解集中的整數解之和.若,,,則實數的取值范圍是A. B. C. D.2.己知集合,,則()A. B. C. D.3.己知函數若函數的圖象上關于原點對稱的點有2對,則實數的取值范圍是()A. B. C. D.4.設為定義在上的奇函數,當時,(為常數),則不等式的解集為()A. B. C. D.5.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.6.中國古建筑借助榫卯將木構件連接起來,構件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構件右邊的小長方體是榫頭.若如圖擺放的木構件與某一帶卯眼的木構件咬合成長方體,則咬合時帶卯眼的木構件的俯視圖可以是A. B. C. D.7.設、分別是定義在上的奇函數和偶函數,且,則()A. B.0 C.1 D.38.已知實數,滿足約束條件,則的取值范圍是()A. B. C. D.9.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數字按照任意次序排成一行,拼成一個6位數,則產生的不同的6位數的個數為A.96 B.84 C.120 D.36010.()A. B. C. D.11.要排出高三某班一天中,語文、數學、英語各節,自習課節的功課表,其中上午節,下午節,若要求節語文課必須相鄰且節數學課也必須相鄰(注意:上午第五節和下午第一節不算相鄰),則不同的排法種數是()A. B. C. D.12.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.8二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,曲線上任意一點到直線的距離的最小值為________.14.若一個正四面體的棱長為1,四個頂點在同一個球面上,則此球的表面積為_________.15.對于任意的正數,不等式恒成立,則的最大值為_____.16.數列的前項和為,數列的前項和為,滿足,,且.若任意,成立,則實數的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設為等差數列的前項和,且,.(1)求數列的通項公式;(2)若滿足不等式的正整數恰有個,求正實數的取值范圍.18.(12分)在中,內角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.19.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.20.(12分)已知函數,.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數,當時,討論零點的個數.21.(12分)已知是各項都為正數的數列,其前項和為,且為與的等差中項.(1)求證:數列為等差數列;(2)設,求的前100項和.22.(10分)已知函數,曲線在點處的切線在y軸上的截距為.(1)求a;(2)討論函數和的單調性;(3)設,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由題意得,表示不等式的解集中整數解之和為6.當時,數形結合(如圖)得的解集中的整數解有無數多個,解集中的整數解之和一定大于6.當時,,數形結合(如圖),由解得.在內有3個整數解,為1,2,3,滿足,所以符合題意.當時,作出函數和的圖象,如圖所示.若,即的整數解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數的取值范圍是.故選D.2、C【解析】
先化簡,再求.【詳解】因為,又因為,所以,故選:C.【點睛】本題主要考查一元二次不等式的解法、集合的運算,還考查了運算求解能力,屬于基礎題.3、B【解析】
考慮當時,有兩個不同的實數解,令,則有兩個不同的零點,利用導數和零點存在定理可得實數的取值范圍.【詳解】因為的圖象上關于原點對稱的點有2對,所以時,有兩個不同的實數解.令,則在有兩個不同的零點.又,當時,,故在上為增函數,在上至多一個零點,舍.當時,若,則,在上為增函數;若,則,在上為減函數;故,因為有兩個不同的零點,所以,解得.又當時,且,故在上存在一個零點.又,其中.令,則,當時,,故為減函數,所以即.因為,所以在上也存在一個零點.綜上,當時,有兩個不同的零點.故選:B.【點睛】本題考查函數的零點,一般地,較為復雜的函數的零點,必須先利用導數研究函數的單調性,再結合零點存在定理說明零點的存在性,本題屬于難題.4、D【解析】
由可得,所以,由為定義在上的奇函數結合增函數+增函數=增函數,可知在上單調遞增,注意到,再利用函數單調性即可解決.【詳解】因為在上是奇函數.所以,解得,所以當時,,且時,單調遞增,所以在上單調遞增,因為,故有,解得.故選:D.【點睛】本題考查利用函數的奇偶性、單調性解不等式,考查學生對函數性質的靈活運用能力,是一道中檔題.5、A【解析】
由題意可知直線過定點即為圓心,由此得到坐標的關系,再根據點差法得到直線的斜率與坐標的關系,由此化簡并求解出離心率的取值范圍.【詳解】設,且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【點睛】本題考查橢圓與圓的綜合應用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設而不求”的目的,大大簡化運算.6、A【解析】
詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應有一不可見的長方形,且俯視圖應為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學生的空間想象能力,屬于基礎題。7、C【解析】
先根據奇偶性,求出的解析式,令,即可求出。【詳解】因為、分別是定義在上的奇函數和偶函數,,用替換,得,化簡得,即令,所以,故選C。【點睛】本題主要考查函數性質奇偶性的應用。8、B【解析】
畫出可行域,根據可行域上的點到原點距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點所圍成的三角形及其內部,如圖中陰影部分,而可理解為可行域內的點到原點距離的平方,顯然原點到所在的直線的距離是可行域內的點到原點距離的最小值,此時,點到原點的距離是可行域內的點到原點距離的最大值,此時.所以的取值范圍是.故選:B【點睛】本小題考查線性規劃,兩點間距離公式等基礎知識;考查運算求解能力,數形結合思想,應用意識.9、B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數共個,其中含有2個10的排列數共個,所以產生的不同的6位數的個數為.故選B.10、D【解析】
利用,根據誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導公式以及兩角差的正弦公式,關鍵在于掌握公式,屬基礎題.11、C【解析】
根據題意,分兩種情況進行討論:①語文和數學都安排在上午;②語文和數學一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數目,由分類加法計數原理可得答案.【詳解】根據題意,分兩種情況進行討論:①語文和數學都安排在上午,要求節語文課必須相鄰且節數學課也必須相鄰,將節語文課和節數學課分別捆綁,然后在剩余節課中選節到上午,由于節英語課不加以區分,此時,排法種數為種;②語文和數學都一個安排在上午,一個安排在下午.語文和數學一個安排在上午,一個安排在下午,但節語文課不加以區分,節數學課不加以區分,節英語課也不加以區分,此時,排法種數為種.綜上所述,共有種不同的排法.故選:C.【點睛】本題考查排列、組合的應用,涉及分類計數原理的應用,屬于中等題.12、A【解析】
依題意可得,再根據離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
解法一:曲線上任取一點,利用基本不等式可求出該點到直線的距離的最小值;解法二:曲線函數解析式為,由求出切點坐標,再計算出切點到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點,該點到直線的距離為,當且僅當時,即當時,等號成立,因此,曲線上任意一點到直線距離的最小值為;解法二(導數法):曲線的函數解析式為,則,設過曲線上任意一點的切線與直線平行,則,解得,當時,到直線的距離;當時,到直線的距離.所以曲線上任意一點到直線的距離的最小值為.故答案為:.【點睛】本題考查曲線上一點到直線距離最小值的計算,可轉化為利用切線與直線平行來找出切點,轉化為切點到直線的距離,也可以設曲線上的動點坐標,利用基本不等式法或函數的最值進行求解,考查分析問題和解決問題的能力,屬于中等題.14、【解析】
將四面體補成一個正方體,通過正方體的對角線與球的半徑的關系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補形成一個正方體,則正四面體的外接球與正方體的外接球表示同一個球,因為正四面體的棱長為1,所以正方體的棱長為,設球的半徑為,因為球的直徑是正方體的對角線,即,解得,所以球的表面積為.【點睛】本題主要考查了有關求得組合體的結構特征,以及球的表面積的計算,其中巧妙構造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關鍵,著重考查了空間想象能力,以及運算與求解能力,屬于基礎題.15、【解析】
根據均為正數,等價于恒成立,令,轉化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數,不等式恒成立,等價于恒成立,令則,當且僅當即時取得等號,故的最大值為.故答案為:【點睛】此題考查不等式恒成立求參數的取值范圍,關鍵在于合理進行等價變形,此題可以構造二次函數求解,也可利用基本不等式求解.16、【解析】
當時,,可得到,再用累乘法求出,再求出,根據定義求出,再借助單調性求解.【詳解】解:當時,,則,,當時,,,,,,(當且僅當時等號成立),,故答案為:.【點睛】本題主要考查已知求,累乘法,主要考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)設等差數列的公差為,根據題意得出關于和的方程組,解出這兩個量的值,然后利用等差數列的通項公式可得出數列的通項公式;(2)求出,可得出,可知當為奇數時不等式不成立,只考慮為偶數的情況,利用數列單調性的定義判斷數列中偶數項構成的數列的單調性,由此能求出正實數的取值范圍.【詳解】(1)設等差數列的公差為,則,整理得,解得,,因此,;(2),滿足不等式的正整數恰有個,得,由于,若為奇數,則不等式不可能成立.只考慮為偶數的情況,令,則,..當時,,則;當時,,則;當時,,則.所以,,又,,,,.因此,實數的取值范圍是.【點睛】本題考查數列的通項公式的求法,考查正實數的取值范圍的求法,考查等差數列的性質等基礎知識,考查運算求解能力,是中檔題.18、(1)(2)【解析】
(1)利用二倍角公式及三角形內角和定理,將化簡為,求出的值,結合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結合,,求出的范圍,注意.進而求出周長的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【點睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應用,求三角形的周長的范圍問題.屬于中檔題.19、(1)見解析(2)【解析】
(1)根據等邊三角形的性質證得,根據面面垂直的性質定理,證得底面,由此證得,結合證得平面,由此證得:平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點,∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標系,則,,,由已知,得,設平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的判定定理和性質定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1);(2)見解析.【解析】
(1)設切點坐標為,然后根據可解得實數的值;(2)令,,然后對實數進行分類討論,結合和的符號來確定函數的零點個數.【詳解】(1),,設曲線與軸相切于點,則,即,解得.所以,當時,軸為曲線的切線;(2)令,,則,,由,得.當時,,此時,函數為增函數;當時,,此時,函數為減函數.,.①當,即當時,函數有一個零點;②當,即當時,函數有兩個零點;③當,即當時,函數有三個零點;④當,即當時,函數有兩個零點;⑤當,即當時,函數只有一個零點.綜上所述,當或時,函數只有一個零點;當或時,函數有兩個零點;當時,函數有三個零點.【點睛】本題考查了利用導數的幾何意義研究切線方程和利用導數研究函數的單調性與極值,關鍵是分類討論思想的應用,屬難題.21、(1)證明見解析;(2).【解析】
(1)利用已知條件化簡出,當時,,當時,再利用進行化簡,得出,即可證明出為等差數列;(2)根據(1)中,求出數列的通項公式,再化簡出,可直接求出的前100項和.【詳解】解:(1)由題意知,即,①當時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 社區活動情況總結報告2025年
- 植物盆栽線描課件
- 2024年秦皇島市第一醫院選聘筆試真題
- 粘連性腸梗阻的護理查房
- 鐵路物流管理專業教學標準(高等職業教育專科)2025修訂
- 廠房電氣安全培訓課件
- 中班健康活動設計要點
- 縱膈腫瘤患者護理指南
- 路隊安全教育
- 建立有效的工作反饋機制的實踐經驗
- 國開電大商務英語3形考任務單元自測1-8答案
- 項目等級評分表
- AHU維修與保養記錄
- CMBS盡調清單目錄
- 機械原理課程設計-自動打印機設計說明書
- 建設工程消防設計審查申報表
- 2020新版個人征信報告模板
- FBI教你破解身體語言(完整版)(54頁)ppt課件
- 華北電力大學-任建文-電力系統PPT(第1章)
- 《文殊真實名經》
- 對敏視達雷達回波進行基于PHIDP的dBZ和ZDR訂正_2014年4月5日~18日
評論
0/150
提交評論