湖南師大附中2021-2022學年中考數學模試卷含解析_第1頁
湖南師大附中2021-2022學年中考數學模試卷含解析_第2頁
湖南師大附中2021-2022學年中考數學模試卷含解析_第3頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.設x1,x2是方程x2-2x-1=0的兩個實數根,則的值是()A.-6 B.-5 C.-6或-5 D.6或52.化簡:(a+)(1﹣)的結果等于()A.a﹣2 B.a+2 C. D.3.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐4.已知,用尺規作圖的方法在上確定一點,使,則符合要求的作圖痕跡是()A. B.C. D.5.已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①abc<0;②2a+b=0;③b2-4ac<0;④9a+3b+c>0;⑤c+8a<0.正確的結論有().A.1個 B.2個 C.3個 D.4個6.對于反比例函數y=(k≠0),下列所給的四個結論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數的圖象關于直線y=﹣x成軸對稱7.學校小組名同學的身高(單位:)分別為:,,,,,則這組數據的中位數是().A. B. C. D.8.如圖,從正方形紙片的頂點沿虛線剪開,則∠1的度數可能是()A.44 B.45 C.46 D.479.一個圓的內接正六邊形的邊長為2,則該圓的內接正方形的邊長為()A. B.2 C.2 D.410.已知關于x的方程x2﹣4x+c+1=0有兩個相等的實數根,則常數c的值為(

)A.﹣1 B.0 C.1 D.311.如圖是由若干個相同的小正方體搭成的一個幾何體的主視圖和俯視圖,則所需的小正方體的個數最少是()A. B. C. D.12.據媒體報道,我國最新研制的“察打一體”無人機的速度極快,經測試最高速度可達204000米/分,這個數用科學記數法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×106二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若a:b=1:3,b:c=2:5,則a:c=_____.14.如圖,AB是⊙O的直徑,BD,CD分別是過⊙O上點B,C的切線,且∠BDC=110°.連接AC,則∠A的度數是_____°.15.若關于x的方程有兩個不相等的實數根,則實數a的取值范圍是______.16.若x,y為實數,y=,則4y﹣3x的平方根是____.17.函數y=中,自變量x的取值范圍為_____.18.在“三角尺拼角”實驗中,小明同學把一副三角尺按如圖所示的方式放置,則∠1=__________°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯結BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯結BC并延長交半徑OM于點A,設OA=x,∠COM的正切值為y.(1)如圖2,當AB⊥OM時,求證:AM=AC;(2)求y關于x的函數關系式,并寫出定義域;(3)當△OAC為等腰三角形時,求x的值.20.(6分)中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優秀傳統文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結果繪制成如圖所示的條形統計圖和扇形統計圖,但均不完整.請你根據統計圖解答下列問題:參加比賽的學生共有____名;在扇形統計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.21.(6分)中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成,已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.(1)若苗圃園的面積為72平方米,求x;(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;(3)當這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.22.(8分)計算:2tan45°-(-)o-23.(8分)八年級(1)班研究性學習小組為研究全校同學課外閱讀情況,在全校隨機邀請了部分同學參與問卷調查,統計同學們一個月閱讀課外書的數量,并繪制了以下統計圖.請根據圖中信息解決下列問題:(1)共有名同學參與問卷調查;(2)補全條形統計圖和扇形統計圖;(3)全校共有學生1500人,請估計該校學生一個月閱讀2本課外書的人數約為多少.24.(10分)如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°.(1)求證:四邊形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面積.25.(10分)如圖,在平行四邊形ABCD中,,點E、F分別是BC、AD的中點.(1)求證:≌;(2)當時,求四邊形AECF的面積.26.(12分)當前,“精準扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學七年級共有四個班,已“建檔立卡”的貧困家庭的學生人數按一、二、三、四班分別記為A1,A2,A3,A4,現對A1,A2,A3,A4統計后,制成如圖所示的統計圖.(1)求七年級已“建檔立卡”的貧困家庭的學生總人數;(2)將條形統計圖補充完整,并求出A1所在扇形的圓心角的度數;(3)現從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.27.(12分)甲乙兩件服裝的進價共500元,商場決定將甲服裝按30%的利潤定價,乙服裝按20%的利潤定價,實際出售時,兩件服裝均按9折出售,商場賣出這兩件服裝共獲利67元.求甲乙兩件服裝的進價各是多少元;由于乙服裝暢銷,制衣廠經過兩次上調價格后,使乙服裝每件的進價達到242元,求每件乙服裝進價的平均增長率;若每件乙服裝進價按平均增長率再次上調,商場仍按9折出售,定價至少為多少元時,乙服裝才可獲得利潤(定價取整數).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實數根,∴x1+x2=2,x1?x2=-1∴=.故選A.2、B【解析】

解:原式====.故選B.考點:分式的混合運算.3、C【解析】分析:根據一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.4、D【解析】試題分析:D選項中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點:作圖—復雜作圖.5、C【解析】

由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】解:拋物線開口向下,得:a<0;拋物線的對稱軸為x=-=1,則b=-2a,2a+b=0,b=-2a,故b>0;拋物線交y軸于正半軸,得:c>0.∴abc<0,①正確;2a+b=0,②正確;由圖知:拋物線與x軸有兩個不同的交點,則△=b2-4ac>0,故③錯誤;由對稱性可知,拋物線與x軸的正半軸的交點橫坐標是x=3,所以當x=3時,y=9a+3b+c=0,故④錯誤;觀察圖象得當x=-2時,y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正確.正確的結論有①②⑤,故選:C【點睛】主要考查圖象與二次函數系數之間的關系,會利用對稱軸的表達式求2a與b的關系,以及二次函數與方程之間的轉換,根的判別式的熟練運用.6、D【解析】分析:根據反比例函數的性質一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當k>0時,y隨x的增大而減小,錯誤,應該是當k>0時,在每個象限,y隨x的增大而減小;故本選項不符合題意;C.錯誤,應該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數的性質,解題的關鍵是熟練掌握反比例函數的性質,靈活運用所學知識解決問題,屬于中考常考題型.7、C【解析】

根據中位數的定義進行解答【詳解】將5名同學的身高按從高到矮的順序排列:159、156、152、151、147,因此這組數據的中位數是152.故選C.【點睛】本題主要考查中位數,解題的關鍵是熟練掌握中位數的定義:一組數據按從小到大(或從大到小)的順序依次排列,處在中間位置的一個數(或最中間兩個數據的平均數)稱為中位數.8、A【解析】

連接正方形的對角線,然后依據正方形的性質進行判斷即可.【詳解】解:如圖所示:∵四邊形為正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故選:A.【點睛】本題主要考查的是正方形的性質,熟練掌握正方形的性質是解題的關鍵.9、B【解析】

圓內接正六邊形的邊長是1,即圓的半徑是1,則圓的內接正方形的對角線長是2,進而就可求解.【詳解】解:∵圓內接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內接正方形的對角線長為圓的直徑,等于2.∴圓的內接正方形的邊長是1.故選B.【點睛】本題考查正多邊形與圓,關鍵是利用知識點:圓內接正六邊形的邊長和圓的半徑相等;圓的內接正方形的對角線長為圓的直徑解答.10、D【解析】分析:由于方程x2﹣4x+c+1=0有兩個相等的實數根,所以?=b2﹣4ac=0,可得關于c的一元一次方程,然后解方程求出c的值.詳解:由題意得,(-4)2-4(c+1)=0,c=3.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.11、B【解析】

主視圖、俯視圖是分別從物體正面、上面看,所得到的圖形.【詳解】綜合主視圖和俯視圖,底層最少有個小立方體,第二層最少有個小立方體,因此搭成這個幾何體的小正方體的個數最少是個.故選:B.【點睛】此題考查由三視圖判斷幾何體,解題關鍵在于識別圖形12、C【解析】試題分析:204000米/分,這個數用科學記數法表示2.04×105,故選C.考點:科學記數法—表示較大的數.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2∶1【解析】分析:已知a、b兩數的比為1:3,根據比的基本性質,a、b兩數的比1:3=(1×2):(3×2)=2:6;而b、c的比為:2:5=(2×3):(5×3)=6:1;,所以a、c兩數的比為2:1.詳解:a:b=1:3=(1×2):(3×2)=2:6;

b:c=2:5=(2×3):(5×3)=6:1;,

所以a:c=2:1;

故答案為2:1.點睛:本題主要考查比的基本性質的實際應用,如果已知甲乙、乙丙兩數的比,那么可以根據比的基本性質求出任意兩數的比.14、4.【解析】試題分析:連結BC,因為AB是⊙O的直徑,所以∠ACB=90°,∠A+∠ABC=90°,又因為BD,CD分別是過⊙O上點B,C的切線,∠BDC=440°,所以CD=BD,所以∠BCD=∠DBC=4°,又∠ABD=90°,所以∠A=∠DBC=4°.考點:4.圓周角定理;4.切線的性質;4.切線長定理.15、a>﹣.【解析】試題分析:已知關于x的方程2x2+x﹣a=0有兩個不相等的實數根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.考點:根的判別式.16、±【解析】∵與同時成立,∴故只有x2﹣4=0,即x=±2,又∵x﹣2≠0,∴x=﹣2,y==﹣,4y﹣3x=﹣1﹣(﹣6)=5,∴4y﹣3x的平方根是±.故答案:±.17、x≠1.【解析】

該函數是分式,分式有意義的條件是分母不等于0,故分母x-1≠0,解得x的范圍.【詳解】根據題意得:x?1≠0,解得:x≠1.故答案為x≠1.【點睛】本題考查了函數自變量的取值范圍,解題的關鍵是熟練的掌握分式的意義.18、1【解析】試題分析:由三角形的外角的性質可知,∠1=90°+30°=1°,故答案為1.考點:三角形的外角性質;三角形內角和定理.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2).();(3).【解析】分析:(1)先判斷出∠ABM=∠DOM,進而判斷出△OAC≌△BAM,即可得出結論;(2)先判斷出BD=DM,進而得出,進而得出AE=,再判斷出,即可得出結論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點D作DE∥AB,交OM于點E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當OA=OC時.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當AO=AC時,則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當CO=CA時,則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當△OAC為等腰三角形時,x的值為.點睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質,圓的有關性質,勾股定理,等腰三角形的性質,建立y關于x的函數關系式是解答本題的關鍵.20、(1)20;(2)40,1;(3).【解析】試題分析:(1)根據等級為A的人數除以所占的百分比求出總人數;(2)根據D級的人數求得D等級扇形圓心角的度數和m的值;(3)列表得出所有等可能的情況數,找出一男一女的情況數,即可求出所求的概率.試題解析:解:(1)根據題意得:3÷15%=20(人),故答案為20;(2)C級所占的百分比為×100%=40%,表示“D等級”的扇形的圓心角為×360°=1°;故答案為40、1.(3)列表如下:所有等可能的結果有6種,其中恰好是一名男生和一名女生的情況有4種,則P恰好是一名男生和一名女生==.21、(1)x=2;(2)苗圃園的面積最大為12.5平方米,最小為5平方米;(3)6≤x≤4.【解析】

(1)根據題意得方程求解即可;(2)設苗圃園的面積為y,根據題意得到二次函數解析式y=x(31-2x)=-2x2+31x,根據二次函數的性質求解即可;(3)由題意得不等式,即可得到結論.【詳解】解:(1)苗圃園與墻平行的一邊長為(31-2x)米.依題意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3,x2=2.又∵31-2x≤3,即x≥6,∴x=2(2)依題意,得8≤31-2x≤3.解得6≤x≤4.面積S=x(31-2x)=-2(x-)2+(6≤x≤4).①當x=時,S有最大值,S最大=;②當x=4時,S有最小值,S最小=4×(31-22)=5.(3)令x(31-2x)=41,得x2-15x+51=1.解得x1=5,x2=1∴x的取值范圍是5≤x≤4.22、2-【解析】

先求三角函數,再根據實數混合運算法計算.【詳解】解:原式=2×1-1-=1+1-=2-【點睛】此題重點考察學生對三角函數值的應用,掌握特殊角的三角函數值是解題的關鍵.23、(1)100;(2)補圖見解析;(3)570人.【解析】

(1)由讀書1本的人數及其所占百分比可得總人數;(2)總人數乘以讀4本的百分比求得其人數,減去男生人數即可得出女生人數,用讀2本的人數除以總人數可得對應百分比;(3)總人數乘以樣本中讀2本人數所占比例.【詳解】(1)參與問卷調查的學生人數為(8+2)÷10%=100人,故答案為:100;(2)讀4本的女生人數為100×15%﹣10=5人,讀2本人數所占百分比為20+補全圖形如下:(3)估計該校學生一個月閱讀2本課外書的人數約為1500×38%=570人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.24、(1)見解析(2)25【解析】試題分析:(1)利用平行四邊形的性質和菱形的性質即可判定四邊形AECF是菱形;(2)連接EF交于點O,運用解直角三角形的知識點,可以求得AC與EF的長,再利用菱形的面積公式即可求得菱形AECF的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,點E是BC邊的中點,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四邊形AECF是平行四邊形.∴平行四邊形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53連接EF交于點O,∴AC⊥EF于點O,點O是AC中點.∴OE=12∴EF=53∴菱形AECF的面積是12AC·EF=25考點:1.菱形的性質和面積;2.平行四邊形的性質;3.解直角三角形.25、(1)見解析;(2)【解析】

(1)根據平行四邊形的性質得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根據全等三角形的判定推出即可;

(2)求出△ABE是等邊三角形,求出高AH的長,再求出面積即可.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴,,,∵點E、F分別是BC、AD的中點,∴,,∴,在和中,∴≌();(2)作于H,∵四邊形ABCD是平行四邊形,∴,,∵點E、F分別是BC、AD的中點,,∴,,∴,,∴四邊形AECF是平行四邊形,∵,∴四邊形AECF是菱形,∴,∵,∴,即是等邊三角形,,由勾股定理得:,∴四邊形AECF的面積是.【點睛】本題考查了等邊三角形的性質和判定,全等三角形的判定,平行四邊形的性質和判定等知識點,能綜合運用定理進行推理是解此題的關鍵.26、(1)15人;(2)補圖見解析.(3)12【解析】

(1)根據三班有6人,占的百分比是40%,用6除以所占的百分比即可得總

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論