初中數(shù)學(xué)常用輔助線添加技巧_第1頁(yè)
初中數(shù)學(xué)常用輔助線添加技巧_第2頁(yè)
初中數(shù)學(xué)常用輔助線添加技巧_第3頁(yè)
初中數(shù)學(xué)常用輔助線添加技巧_第4頁(yè)
初中數(shù)學(xué)常用輔助線添加技巧_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 初中數(shù)學(xué)常用輔助線添加技巧 人們從來(lái)就是用自己的聰慧才智制造條件解決問(wèn)題的,當(dāng)問(wèn)題的條件不夠時(shí),添加幫助線構(gòu)成新圖形,形成新關(guān)系,使分散的條件集中,建立已知與未知的橋梁,把問(wèn)題轉(zhuǎn)化為自己能解決的問(wèn)題,這是解決問(wèn)題常用的策略。 學(xué)校數(shù)學(xué)常用幫助線添加技巧 一.添幫助線有二種狀況: 1按定義添幫助線: 如證明二直線垂直可延長(zhǎng)使它們相交后證交角為90;證線段倍半關(guān)系可倍線段取中點(diǎn)或半線段加倍;證角的倍半關(guān)系也可類(lèi)似添幫助線。 2按基本圖形添幫助線: 每個(gè)幾何定理都有與它相對(duì)應(yīng)的幾何圖形,我們 把它叫做基本圖形,添幫助線往往是具有基本圖形的性質(zhì)而基本圖形不完整時(shí)補(bǔ)完整基本圖形,因此“添線”應(yīng)當(dāng)叫做“

2、補(bǔ)圖”!這樣可防止亂添線,添幫助線也有規(guī)律可循。舉例如下: (1)平行線是個(gè)基本圖形: 當(dāng)幾何中消失平行線時(shí)添幫助線的關(guān)鍵是添與二條平行線都相交的等第三條直線 (2)等腰三角形是個(gè)簡(jiǎn)潔的基本圖形: 當(dāng)幾何問(wèn)題中消失一點(diǎn)發(fā)出的二條相等線段時(shí)往往要補(bǔ)完整等腰三角形。消失角平分線與平行線組合時(shí)可延長(zhǎng)平行線與角的二邊相交得等腰三角形。 (3)等腰三角形中的重要線段是個(gè)重要的基本圖形: 消失等腰三角形底邊上的中點(diǎn)添底邊上的中線;消失角平分線與垂線組合時(shí)可延長(zhǎng)垂線與角的二邊相交得等腰三角形中的重要線段的基本圖形。 (4)直角三角形斜邊上中線基本圖形 消失直角三角形斜邊上的中點(diǎn)往往添斜邊上的中線。消失線段倍

3、半關(guān)系且倍線段是直角三角形的斜邊則要添直角三角形斜邊上的中線得直角三角形斜邊上中線基本圖形。 (5)三角形中位線基本圖形 幾何問(wèn)題中消失多個(gè)中點(diǎn)時(shí)往往添加三角形中位線基本圖形進(jìn)行證明當(dāng)有中點(diǎn)沒(méi)有中位線時(shí)則添中位線,當(dāng)有中位線三角形不完整時(shí)則需補(bǔ)完整三角形; 當(dāng)消失線段倍半關(guān)系且與倍線段有公共端點(diǎn)的線段帶一個(gè)中點(diǎn)則可過(guò)這中點(diǎn)添倍線段的平行線得三角形中位線基本圖形;當(dāng)消失線段倍半關(guān)系且與半線段的端點(diǎn)是某 線段的中點(diǎn),則可過(guò)帶中點(diǎn)線段的端點(diǎn)添半線段的平行線得三角形中位線基本圖形。 (6)全等三角形: 全等三角形有軸對(duì)稱(chēng)形,中心對(duì)稱(chēng)形,旋轉(zhuǎn)形與平移形等;假如消失兩條相等線段或兩個(gè)檔相等角關(guān)于某始終線成

4、軸對(duì)稱(chēng)就可以添加軸對(duì)稱(chēng)形全等三角 形:或添對(duì)稱(chēng)軸,或?qū)⑷切窝貙?duì)稱(chēng)軸翻轉(zhuǎn)。當(dāng)幾何問(wèn)題中消失一組或兩組相等線段位于一組對(duì)頂角兩邊且成始終線時(shí)可添加中心對(duì)稱(chēng)形全等三角形加以證明,添加 (方法)是將四個(gè)端點(diǎn)兩兩連結(jié)或過(guò)二端點(diǎn)添平行線 (7)相像三角形: 相像三角形有平行線型(帶平行線的相像三角形),相交線型,旋轉(zhuǎn)型;當(dāng)消失相比線段重疊在始終線上時(shí)(中點(diǎn)可看成比為1)可添加平行線得平行線型相像三角形。若平行線過(guò)端點(diǎn)添則可以分點(diǎn)或另一端點(diǎn)的線段為平行方向,這類(lèi)題目中往往有多種淺線方法。 (8)特別角直角三角形 當(dāng)消失30,45,60,135,150度特別角時(shí)可添加特別角直角三角形,利用45角直角三角形三

5、邊比為1:1:2;30度角直角三角形三邊比為1:2:3進(jìn)行證明 (9)半圓上的圓周角 消失直徑與半圓上的點(diǎn),添90度的圓周角;消失90度的圓周角則添它所對(duì)弦直徑;平面幾何中總共只有二十多個(gè)基本圖形就像房子不外有一砧,瓦,水泥,石灰,木等組成一樣。 二.基本圖形的幫助線的畫(huà)法 1.三角形問(wèn)題添加幫助線方法 方法1:有關(guān)三角形中線的題目,常將中線加倍。含有中點(diǎn)的題目,經(jīng)常利用三角形的中位線,通過(guò)這種方法,把要證的結(jié)論恰當(dāng)?shù)霓D(zhuǎn)移,很簡(jiǎn)單地解決了問(wèn)題。 方法2:含有平分線的題目,常以角平分線為對(duì)稱(chēng)軸,利用角平分線的性質(zhì)和題中的條件,構(gòu)造出全等三角形,從而利用全等三角形的學(xué)問(wèn)解決問(wèn)題。 方法3:結(jié)論是兩

6、線段相等的題目常畫(huà)幫助線構(gòu)成全等三角形,或利用關(guān)于平分線段的一些定理。 方法4:結(jié)論是一條線段與另一條線段之和等于第三條線段這類(lèi)題目,常采納截長(zhǎng)法或補(bǔ)短法,所謂截長(zhǎng)法就是把第三條線段分成兩部分,證其中的一部分等于第一條線段,而另一部分等于其次條線段。 2.平行四邊形中常用幫助線的添法 平行四邊形(包括矩形、正方形、菱形)的兩組對(duì)邊、對(duì)角和對(duì)角線都具有某些相同性質(zhì),所以在添幫助線方法上也有共同之處,目的都是造就線段的平 行、垂直,構(gòu)成三角形的全等、相像,把平行四邊形問(wèn)題轉(zhuǎn)化成常見(jiàn)的三角形、正方形等問(wèn)題處理,其常用方法有下列幾種,舉例簡(jiǎn)解如下: (1)連對(duì)角線或平移對(duì)角線: (2)過(guò)頂點(diǎn)作對(duì)邊的垂

7、線構(gòu)造直角三角形 (3)連接對(duì)角線交點(diǎn)與一邊中點(diǎn),或過(guò)對(duì)角線交點(diǎn)作一邊的平行線,構(gòu)造線段平行或中位線 (4)連接頂點(diǎn)與對(duì)邊上一點(diǎn)的線段或延長(zhǎng)這條線段,構(gòu)造三角形相像或等積三角形。 (5)過(guò)頂點(diǎn)作對(duì)角線的垂線,構(gòu)成線段平行或三角形全等. 3.梯形中常用幫助線的添法 梯形是一種特別的四邊形。它是平行四邊形、三角形學(xué)問(wèn)的綜合,通過(guò)添加適當(dāng)?shù)膸椭€將梯形問(wèn)題化歸為平行四邊形問(wèn)題或三角形問(wèn)題來(lái)解決。幫助線的添加成為問(wèn)題解決的橋梁,梯形中常用到的幫助線有: (1)在梯形內(nèi)部平移一腰。 (2)梯形外平移一腰 (3)梯形內(nèi)平移兩腰 (4)延長(zhǎng)兩腰 (5)過(guò)梯形上底的兩端點(diǎn)向下底作高 (6)平移對(duì)角線 (7)連

8、接梯形一頂點(diǎn)及一腰的中點(diǎn)。 (8)過(guò)一腰的中點(diǎn)作另一腰的平行線。 (9)作中位線 當(dāng)然在梯形的有關(guān)證明和計(jì)算中,添加的幫助線并不肯定是固定不變的、單一的。通過(guò)幫助線這座橋梁,將梯形問(wèn)題化歸為平行四邊形問(wèn)題或三角形問(wèn)題來(lái)解決,這是解決問(wèn)題的關(guān)鍵。 4.圓中常用幫助線的添法 在平面幾何中,解決與圓有關(guān)的問(wèn)題時(shí),經(jīng)常需要添加適當(dāng)?shù)膸椭€,架起題設(shè)和結(jié)論間的橋梁,從而使問(wèn)題化難為易,順其自然地得到解決,因此,敏捷把握作幫助線的一般規(guī)律和常見(jiàn)方法,對(duì)提高同學(xué)分析問(wèn)題和解決問(wèn)題的力量是大有關(guān)心的。 (1)見(jiàn)弦作弦心距 有關(guān)弦的問(wèn)題,常作其弦心距(有時(shí)還須作出相應(yīng)的半徑),通過(guò)垂徑平分定理,來(lái)溝通題設(shè)與結(jié)論間的聯(lián)系。 (2)見(jiàn)直徑作圓周角 在題目中若已知圓的直徑,一般是作直徑所對(duì)的圓周角,利用直徑所對(duì)的圓周角是直角這一特征來(lái)證明問(wèn)題。 (3)見(jiàn)切線作半徑 命題的條件中含有圓的切線,往往是連結(jié)過(guò)切點(diǎn)的半徑,利用切線與半徑垂直這一性質(zhì)來(lái)證明問(wèn)題。 (4)兩圓相切作公切線 對(duì)兩圓相切的問(wèn)題,一般是經(jīng)過(guò)切點(diǎn)作兩圓的公切線或作它們的連心線,通過(guò)公切線可以找到與圓有關(guān)的角的關(guān)系。 (5)兩圓相交作公共弦 對(duì)兩圓相交的問(wèn)題,通常是作出公共弦,通過(guò)公共弦既可把兩圓的弦聯(lián)系起來(lái),又可以把兩圓中的圓周角或圓心角聯(lián)系起來(lái)。 學(xué)校數(shù)學(xué)常用幫助線添加技巧相關(guān)(文章): 1.初二數(shù)學(xué)的重要性, 幾何常見(jiàn)幫助線口

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論