




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1下列不等式成立的是( )ABCD2已知隨機變量滿足,.若,則( )A,B,C,D,3已知集合,則為( )ABCD4某個命題與自然數(shù)有關,且已證得“假設時該命題成立,則時該命題也成立”現(xiàn)
2、已知當時,該命題不成立,那么( )A當時,該命題不成立B當時,該命題成立C當時,該命題不成立D當時,該命題成立5已知平面向量,滿足且,若對每一個確定的向量,記的最小值為,則當變化時,的最大值為( )ABCD16已知函數(shù)的最大值為,若存在實數(shù),使得對任意實數(shù)總有成立,則的最小值為( )ABCD7已知函數(shù),則( )A函數(shù)在上單調遞增B函數(shù)在上單調遞減C函數(shù)圖像關于對稱D函數(shù)圖像關于對稱8已知復數(shù)z=2i1-i,則z的共軛復數(shù)在復平面對應的點位于( )A第一象限B第二象限C第三象限D第四象限9已知為銳角,且,則等于( )ABCD10設是兩條不同的直線,是兩個不同的平面,則下列命題正確的是( )A若,
3、則B若,則C若,則D若,則11已知實數(shù),滿足約束條件,則的取值范圍是( )ABCD12復數(shù)滿足,則復數(shù)等于()ABC2D-2二、填空題:本題共4小題,每小題5分,共20分。13在的展開式中,常數(shù)項為_.(用數(shù)字作答)14將2個相同的紅球和2個相同的黑球全部放入甲、乙、丙、丁四個盒子里,其中甲、乙盒子均最多可放入2個球,丙、丁盒子均最多可放入1個球,且不同顏色的球不能放入同一個盒子里,共有_種不同的放法.15已知實數(shù) 滿足,則的最大值為_.16雙曲線的焦距為_,漸近線方程為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以
4、坐標原點為極點,軸正半軸為極軸,建立極坐標系.已知點的直角坐標為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標方程和曲線的普通方程;(2)求的值.18(12分)已知傾斜角為的直線經過拋物線的焦點,與拋物線相交于、兩點,且.(1)求拋物線的方程;(2)設為拋物線上任意一點(異于頂點),過做傾斜角互補的兩條直線、,交拋物線于另兩點、,記拋物線在點的切線的傾斜角為,直線的傾斜角為,求證:與互補.19(12分)分別為的內角的對邊.已知.(1)若,求;(2)已知,當?shù)拿娣e取得最大值時,求的周長.20(12分)已知動點到定點的距離比到軸的距離多.(1)求動點的軌跡的方程;(2)設,是軌跡在上
5、異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且時,證明:直線恒過定點,并求出該定點的坐標.21(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點的個數(shù);(2)記函數(shù)在區(qū)間上的兩個極值點分別為、,求證:.22(10分)已知函數(shù),當時,有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調區(qū)間.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】根據指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調性和正余弦函數(shù)的圖象可確定各個選項的正誤.【詳解】對于,錯誤;對于,在上單調遞減,錯誤;對于,錯誤;對于,在上單調遞增,正確.故選:.【點睛
6、】本題考查根據初等函數(shù)的單調性比較大小的問題;關鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)的單調性.2B【解析】根據二項分布的性質可得:,再根據和二次函數(shù)的性質求解.【詳解】因為隨機變量滿足,.所以服從二項分布,由二項分布的性質可得:,因為,所以,由二次函數(shù)的性質可得:,在上單調遞減,所以.故選:B【點睛】本題主要考查二項分布的性質及二次函數(shù)的性質的應用,還考查了理解辨析的能力,屬于中檔題.3C【解析】分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,所以故選:C【點睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.4
7、C【解析】寫出命題“假設時該命題成立,則時該命題也成立”的逆否命題,結合原命題與逆否命題的真假性一致進行判斷.【詳解】由逆否命題可知,命題“假設時該命題成立,則時該命題也成立”的逆否命題為“假設當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.【點睛】本題考查逆否命題與原命題等價性的應用,解題時要寫出原命題的逆否命題,結合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.5B【解析】根據題意,建立平面直角坐標系.令.為中點.由即可求得點的軌跡方程.將變形,結合及平面向量基本定理可知三點共線.由圓切線的性質可知的最小值即為到直線的距離最小值
8、,且當與圓相切時,有最大值.利用圓的切線性質及點到直線距離公式即可求得直線方程,進而求得原點到直線的距離,即為的最大值.【詳解】根據題意,設,則由代入可得即點的軌跡方程為又因為,變形可得,即,且所以由平面向量基本定理可知三點共線,如下圖所示:所以的最小值即為到直線的距離最小值根據圓的切線性質可知,當與圓相切時,有最大值設切線的方程為,化簡可得由切線性質及點到直線距離公式可得,化簡可得 即 所以切線方程為或所以當變化時, 到直線的最大值為 即的最大值為故選:B【點睛】本題考查了平面向量的坐標應用,平面向量基本定理的應用, 圓的軌跡方程問題,圓的切線性質及點到直線距離公式的應用,綜合性強,屬于難題
9、.6B【解析】根據三角函數(shù)的兩角和差公式得到,進而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結果.【詳解】函數(shù) 則函數(shù)的最大值為2,存在實數(shù),使得對任意實數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即 故答案為:B.【點睛】這個題目考查了三角函數(shù)的兩角和差的正余弦公式的應用,以及三角函數(shù)的圖像的性質的應用,題目比較綜合.7C【解析】依題意可得,即函數(shù)圖像關于對稱,再求出函數(shù)的導函數(shù),即可判斷函數(shù)的單調性;【詳解】解:由,所以函數(shù)圖像關于對稱,又,在上不單調.故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導數(shù)判斷函數(shù)的單調性,屬于基礎題.8C【解
10、析】分析:根據復數(shù)的運算,求得復數(shù)z,再利用復數(shù)的表示,即可得到復數(shù)對應的點,得到答案詳解:由題意,復數(shù)z=2i1-i=2i1+i1-i1+i=-1+i,則z=-1-i所以復數(shù)z在復平面內對應的點的坐標為(-1,-1),位于復平面內的第三象限,故選C點睛:本題主要考查了復數(shù)的四則運算及復數(shù)的表示,其中根據復數(shù)的四則運算求解復數(shù)z是解答的關鍵,著重考查了推理與運算能力9C【解析】由可得,再利用計算即可.【詳解】因為,所以,所以.故選:C.【點睛】本題考查二倍角公式的應用,考查學生對三角函數(shù)式化簡求值公式的靈活運用的能力,屬于基礎題.10C【解析】根據空間中直線與平面、平面與平面位置關系相關定理依
11、次判斷各個選項可得結果.【詳解】對于,當為內與垂直的直線時,不滿足,錯誤;對于,設,則當為內與平行的直線時,但,錯誤;對于,由,知:,又,正確;對于,設,則當為內與平行的直線時,錯誤.故選:.【點睛】本題考查立體幾何中線面關系、面面關系有關命題的辨析,考查學生對于平行與垂直相關定理的掌握情況,屬于基礎題.11B【解析】畫出可行域,根據可行域上的點到原點距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,三點所圍成的三角形及其內部,如圖中陰影部分,而可理解為可行域內的點到原點距離的平方,顯然原點到所在的直線的距離是可行域內的點到原點距離的最小值,此時,點到原點的距離是可行域內的點到原點距離的
12、最大值,此時.所以的取值范圍是.故選:B【點睛】本小題考查線性規(guī)劃,兩點間距離公式等基礎知識;考查運算求解能力,數(shù)形結合思想,應用意識.12B【解析】通過復數(shù)的模以及復數(shù)的代數(shù)形式混合運算,化簡求解即可.【詳解】復數(shù)滿足,故選B.【點睛】本題主要考查復數(shù)的基本運算,復數(shù)模長的概念,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13【解析】的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數(shù)項.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力.14【解析】討論裝球盒子的個數(shù),計算得到答案.【詳解】當四個盒子有球時:種;當三個盒子有球時:種;當兩個盒
13、子有球時:種.故共有種,故答案為:.【點睛】本題考查了排列組合的綜合應用,意在考查學生的理解能力和應用能力.15【解析】作出不等式組所表示的平面區(qū)域,將目標函數(shù)看作點與可行域的點所構成的直線的斜率,當直線過時,直線的斜率取得最大值,代入點A的坐標可得答案.【詳解】畫出二元一次不等式組所表示的平面區(qū)域,如下圖所示,由得點,目標函數(shù)表示點與可行域的點所構成的直線的斜率,當直線過時,直線的斜率取得最大值,此時的最大值為.故答案為:. 【點睛】本題考查求目標函數(shù)的最值,關鍵在于明確目標函數(shù)的幾何意義,屬于中檔題.166 【解析】由題得 所以焦距,故第一個空填6.由題得漸近線方程為.故第二個空填.三、解
14、答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1):,:;(2)【解析】(1)根據點斜式寫出直線的直角坐標方程,并轉化為極坐標方程,利用,將曲線的參數(shù)方程轉化為普通方程.(2)將直線的參數(shù)方程代入曲線的普通方程,結合直線參數(shù)的幾何意義以及根與系數(shù)關系,求得的值.【詳解】(1)的直角坐標方程為,即,則的極坐標方程為.曲線的普通方程為.(2)直線的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線的普通方程,得. 設,對應的參數(shù)分別為,所以,在的兩側.則.【點睛】本小題主要考查直角坐標化為極坐標,考查參數(shù)方程化為普通方程,考查直線參數(shù)方程,考查直線參數(shù)的幾何意義,屬于中檔題.18(1)(2
15、)證明見解析【解析】(1)根據題意,設直線方程為,聯(lián)立方程,根據拋物線的定義即可得到結論;(2)根據題意,設的方程為,聯(lián)立方程得,同理可得,進而得到,再利用點差法得直線的斜率,利用切線與導數(shù)的關系得直線的斜率,進而可得與互補.【詳解】(1)由題意設直線的方程為,令、,聯(lián)立,得,根據拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設,設的方程為,與聯(lián)立消去得,同理,直線的斜率=切線的斜率,由,即與互補.【點睛】本題考查直線與拋物線的位置關系的綜合應用,直線斜率的應用,考查分析問題解決問題的能力,屬于中檔題19(1)(2)【解析】(1)根據正弦定理,將,化角為邊,即可求出,再利用正弦定理即可
16、求出;(2)根據,選擇,所以當?shù)拿娣e取得最大值時,最大,結合(1)中條件,即可求出最大時,對應的的值,再根據余弦定理求出邊,進而得到的周長【詳解】(1)由,得,即.因為,所以.由,得.(2)因為,所以,當且僅當時,等號成立.因為的面積.所以當時,的面積取得最大值,此時,則,所以的周長為.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應用,意在考查學生的轉化能力和數(shù)學運算能力20(1)或;(2)證明見解析,定點【解析】(1)設,由題意可知,對的正負分情況討論,從而求得動點的軌跡的方程;(2)設其方程為,與拋物線方程聯(lián)立,利用韋達定理得到,所以,所以直線的方程可表示為,即,
17、所以直線恒過定點【詳解】(1)設,動點到定點的距離比到軸的距離多,時,解得,時,解得.動點的軌跡的方程為或(2)證明:如圖,設,由題意得(否則)且,所以直線的斜率存在,設其方程為,將與聯(lián)立消去,得,由韋達定理知,顯然,將式代入上式整理化簡可得:,所以,此時,直線的方程可表示為,即,所以直線恒過定點.【點睛】本題主要考查了動點軌跡,考查了直線與拋物線的綜合,是中檔題21(1);(2)見解析.【解析】(1)利用導數(shù)分析函數(shù)在區(qū)間上的單調性與極值,結合零點存在定理可得出結論;(2)設函數(shù)的極大值點和極小值點分別為、,由(1)知,且滿足,于是得出,由得,利用正切函數(shù)的單調性推導出,再利用正弦函數(shù)的單調性可得出結論.【詳解】(1),當時,則函數(shù)在上單調遞增;當時,則函數(shù)在上單調遞減;當時,則函數(shù)在上單調遞增.,.所以,函數(shù)在與不存在零點,在區(qū)間和上各存在一個零點.綜上所述,函數(shù)在區(qū)間上的零點的個數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點,所以,函數(shù)在區(qū)間與上各存在一個極值點、,且,且滿足即,又,即,由在上單調遞增,得,再由在上單調遞減,得,即.【點睛】本題考查利用導數(shù)研究函數(shù)的零點個數(shù)問題,同時也考查了利用導數(shù)證明不等式,考查分析問題和解決問題的能力,屬于難題.22(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆河南省三門峽市化學高一下期末復習檢測模擬試題含解析
- 內蒙古自治區(qū)赤峰市2025年高二化學第二學期期末綜合測試模擬試題含解析
- 桐柏危房排查管理辦法
- 杭州電子印章管理辦法
- 材料命名規(guī)則管理辦法
- 村級廁所后期管理辦法
- 填料技術創(chuàng)新方向-洞察及研究
- 醫(yī)保應急賬戶管理辦法
- 廢舊鋰離子電池回收處理綜合利用項目的環(huán)境保護評估報告
- 河源住房維修管理辦法
- GB/T 20319-2017風力發(fā)電機組驗收規(guī)范
- GB/T 18391.4-2009信息技術元數(shù)據注冊系統(tǒng)(MDR)第4部分:數(shù)據定義的形成
- GB/T 13017-2018企業(yè)標準體系表編制指南
- 蒸汽鍋爐的對比分析
- 038正式送電申請單
- 醫(yī)學課件-快速康復ERAS普外科幻燈教學課件
- 關聯(lián)交易同期資料培訓講義課件
- 壓力管道基礎知識(管理類)
- 氣體滅火系統(tǒng)驗收表1
- 新北師大版六年級上冊數(shù)學全冊教學課件
- DB1309T 256-2021 榆三節(jié)葉蜂綜合防治技術規(guī)程
評論
0/150
提交評論