




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、會計學1LinearAlgebra第一頁,編輯于星期六:十八點 二十九分。2Chapter Overview第1頁/共26頁第二頁,編輯于星期六:十八點 二十九分。3Chapter 6 EigenvaluesChapter 6 Eigenvalues We consider the problem of factoring an n n matrix A into a product of the form XDX-1, where D is diagonal; We will give a necessary and sufficient condition for the existenc
2、e of such a factorization and look at a number of examples.第2頁/共26頁第三頁,編輯于星期六:十八點 二十九分。4 If 1, 2, , k are distinct eigenvalues of an n n matrix A with corresponding eigenvectors x1, x2, , xk, then x1, x2, , xk are linearly independent.6.3 Diagonalization6.3 Diagonalization第3頁/共26頁第四頁,編輯于星期六:十八點 二十九分
3、。5Let r = dim(Span(x1, x2, xk), and assume that r k.( Implies that there are at most r linearly independent vectors in x1, x2, xk ). Assume that x1, x2, xr are linearly independent without loss of generality.Since x1, x2, xr, xr+1 are linearly dependent, there exists scalars c1, , cr, cr+1 not all z
4、eros such thatc1x1+ + crxr + cr+1xr+1 = 0(1)6.3 Diagonalization6.3 Diagonalization第4頁/共26頁第五頁,編輯于星期六:十八點 二十九分。6(2)Note that cr+1 cannot be 0 (if cr+1 =0, then x1, , , xr are l.d.). So cr+1xr+1 0, and hence c1, , , cr cannot all be 0.Multiplying both sides of (1) by A, we havec1Ax1+ + crAxr + cr+1Axr
5、+1 = 0 c11x1+ + crrxr + cr+1r+1xr+1 = 0.Multiplying (1) by r+1 and subtracting it from (2), we obtainc1(1 r+1)x1+ + cr(r r+1)xr = 0.6.3 Diagonalization6.3 Diagonalization第5頁/共26頁第六頁,編輯于星期六:十八點 二十九分。7Since 1, 2, , k are distinct eigenvalues, then x1, , , xr becomes linearly dependent.So it is a contr
6、adiction to the assumption thatr = dim Span(x1, , , xk) k.Hence r = k and x1, , , xk are linearly independent.6.3 Diagonalization6.3 Diagonalization第6頁/共26頁第七頁,編輯于星期六:十八點 二十九分。8An n n matrix A is said to be if there exists a nonsingular matrix X and a diagonal matrix D such thatX-1AX = Dwe say that
7、X A. If A is diagonalizable by X, the column vectors of X areeigenvectors of A, and the diagonal elements of D arethe eigenvalues of A. The diagonalizing matrix X is not unique.6.3 Diagonalization6.3 Diagonalization第7頁/共26頁第八頁,編輯于星期六:十八點 二十九分。96.3 Diagonalization6.3 DiagonalizationAn n n matrix A is
8、 diagonalizable if and only if A has n linearly independent eigenvectors.第8頁/共26頁第九頁,編輯于星期六:十八點 二十九分。10Suppose that A has n linearly independent eigenvectors x1, x2 , , xn . Let i be the eigenvalue of A corresponding to xi for each i (some of the is may be equal). Let X = (x1, x2, , , xn), then jxj
9、is the jth column vector of AX. Therefore,1211221212(,)(,)(,)xxxxxxx xxnnnnnAXAAAXD6.3 Diagonalization6.3 DiagonalizationSince X has n linearly independent column vectors, it follows that X is nonsingular and hence.1DXAX第9頁/共26頁第十頁,編輯于星期六:十八點 二十九分。11#Conversely, suppose that A is diagonalizable, the
10、n there exists a nonsingular matrix X such that AX = XD.If x1, x2, , , xn are the column vectors of X, thenThus, for each j, j is an eigenvalue of A and xj ( 0) is an eigenvector belonging to j.Since X is nonsingular, A has n linearly independent engienvectors.6.3 Diagonalization6.3 Diagonalization(
11、)xxjjjjjjAd第10頁/共26頁第十一頁,編輯于星期六:十八點 二十九分。12 If A is diagonalizable, then the column vectors of the diagonalizing matrix X areeigenvectors of A the diagonal elements of D are the correspondingeigenvalues of A The diagonalizing matrix X is not unique. Reorderingthe columns of a given diagonalizing mat
12、rix X ormultiplying them by nonzero scalars will produce anew diagonalizing matrix.6.3 Diagonalization6.3 Diagonalization第11頁/共26頁第十二頁,編輯于星期六:十八點 二十九分。13 If A is n n and A has n distinct eigenvalues, then Ahas n linearly independent eigenvectors, and henceA is diagonalizable. If the eigenvalues are
13、not distinct, then A may or maynot be diagonalizable depending on whether A has nlinearly independent eigenvectors. A has n linearly independent eigenvectors ifdimension of N(A- I) = multiplicity of for all repeated eigenvalues.6.3 Diagonalization6.3 Diagonalization第12頁/共26頁第十三頁,編輯于星期六:十八點 二十九分。14 I
14、f A is diagonalizable, then A can be factored into a product XDX-1. Therefore, A2 = (XDX1)(XDX1) = XD2X1in general,6.3 Diagonalization6.3 Diagonalization111200kkkkknAXD XXX第13頁/共26頁第十四頁,編輯于星期六:十八點 二十九分。15Factor the matrix A into XDX-1, where D is diagonal:6.3 Diagonalization6.3 Diagonalization2325A第
15、14頁/共26頁第十五頁,編輯于星期六:十八點 二十九分。16The eigenvalues of A are 1=1 and 2= 4. Corresponding to 1 and 2, we have eigenvectors x1=(3,1)T and x2=(1,2)T. Let3 11 2Xthen1121233 1101 3251 2045XAXand1213 11023551 204132555XDXA6.3 Diagonalization6.3 Diagonalization第15頁/共26頁第十六頁,編輯于星期六:十八點 二十九分。17Factor the matrix A
16、 into XDX-1, where D is diagonal:6.3 Diagonalization6.3 Diagonalization3122 02211A第16頁/共26頁第十七頁,編輯于星期六:十八點 二十九分。186.3 Diagonalization6.3 DiagonalizationFactor the matrix A into XDX-1, where D is diagonal:1 10 1A第17頁/共26頁第十八頁,編輯于星期六:十八點 二十九分。19 If an n n matrix A has fewer than n linearly independent
17、 eigenvectors, we say that A is e. A defective matrix is not diagonalizable.The matrixhas two distinct eigenvalues 1 = 4, 2 = 3 = 2. The eigenspace of 1 is Span(e2) and the eigenspace of 2 and 3 is Span(e3). A is a defective matrix.6.3 Diagonalization6.3 Diagonalization2 0 00 4 01 0 2A第18頁/共26頁第十九頁,
18、編輯于星期六:十八點 二十九分。206.3 Diagonalization6.3 Diagonalization Consider the eigenvectors of the matrices200200040and140102362AB 第19頁/共26頁第二十頁,編輯于星期六:十八點 二十九分。21eigenvalues: 1=4, 2= 3=2eigenspaces: 1:e2, 2, 3:e3 =2 has geometric multiplicity 1 1=4, 2= 3=2 1:x1=(0,1,3)T, 2, 3:x2=(2,1,0)T, e3 geometric multi
19、plicity 26.3 Diagonalization6.3 Diagonalization第20頁/共26頁第二十一頁,編輯于星期六:十八點 二十九分。22 Given a scalar a, the exponential ea can be expressed in terms of a power series Given an n n matrix A, we can define the matrix exponential eA in terms of the convergent power series In case of a diagonal matrix:6.3 Di
20、agonalization6.3 Diagonalization231112!3!aeaaa 23112!3!AeIAAA12nD1211111lim2!1!lim1!nDmmmkkmmknkeIDDDmekek第21頁/共26頁第二十二頁,編輯于星期六:十八點 二十九分。23 If the n n matrix A is diagonalizable, then2311112!3!ADeXIDDDXXe X1for1,2,.kkAXD Xkcompute eA for2613A11211110131,0( 2,1) ,( 3,1)1223013326611121 320TTADAXDXeeeeXe Xeee xx6.3 Diagonalization6.3 Diagonalization第22頁/共26頁第二十三頁,編輯于星期六:十八點 二十九分。24 The matrix exponential can be applied to the The solution to the initial value problem is simply If A is a diagonal matrix:6.3 Diagonalization6.3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 天津房地產市場研究報告調查分析總結
- 遼寧工程職業技術學院職測復習測試有答案
- CRH380AL型車組三級修復習測試題
- 氣瓶復習測試題
- 結合案例分析2025年信息系統監理師考試試題及答案
- 針對性的公路工程試題及答案
- 現代物流管理綜合測試題
- 合同協議誠意金協議
- 環境保護與污染治理測試題
- 行政組織的綜合評價體系研究試題及答案
- 2023年上海海洋大學碩士研究生自然辯證法試題庫完整版
- GA/T 445-2003公安交通指揮系統建設技術規范
- 發動機機械-01.1cm5a4g63維修手冊
- 馬克思主義新聞觀十二講之第八講堅持新聞真實原則課件
- 交通信號控制系統檢驗批質量驗收記錄表
- 護理部用藥安全質量評價標準
- 中國本土私募股權基金的投資管理及退出(清華)
- 汽車零部件規范申報ppt課件
- 門護板設計指導書RYSAT
- 沙盤游戲治療(課堂PPT)
- 祭侄文稿顏真卿
評論
0/150
提交評論