變頻器低頻狀態_第1頁
變頻器低頻狀態_第2頁
變頻器低頻狀態_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、1 概述 由變頻器構成的交流調速系統普遍存在的問題是,系統運行在低頻區域時,其性能不夠理想,主要表現在低頻啟動時啟動轉矩小,造成系統啟動困難甚至無法啟動。由于變頻器的非線性產生的高次諧波,引起電動機的轉距脈動及電動機發熱,并且電動機運行噪聲也加大。低頻穩態運行時,受電網電壓波動或系統負載的變化及變頻器輸出電壓波形的奇變,將造成電動機的抖動。當變頻器距電動機距離較大時及高次諧波對控制電路的干擾,極易引起電動機的爬行。由于上述各種現象,嚴重降低由變頻器構成的調速系統的調速特性和動態品質指標,本文對系統的低頻機械特性和變頻器的低頻特性進行分析,提出采取相應的措施,以使系統的低頻運行特性能得以改善。

2、2 變頻器低頻機械特性 2.1 低頻啟動特性 異步電動機改變定子頻率F1,即可平滑地調節電動機的同步轉速,但是隨著F1的變化,電動機的機械特性也將發生改變,尤其是在低頻區域,根據異步電動機的最大轉距公式: Temax=3/2np(U1/W1)2/R1/W1+/(R2/W1)2+(LL1+LL2)2 式中np電動機極對數; R1定子每相電阻; R2折合到定子側的轉子每相電阻; LL1定子每相漏感; LL2折合到定子側的轉子每漏感; U1電動機定子每相電壓; W1電源角頻率 可見Temax是隨著W1的降低而減小,在低頻時,R1已不可忽略。Temax將隨著W1的減小而減小,啟動轉距也將減小,甚至不能

3、帶動負載。 2.2 低頻穩態特性 電動機穩態運行時的轉距公式如下: TL=3np(U1/W1)2SW1R2/(SR1+R2)2+S2W2(LL1+LL2)2 在角頻率W1為額定時,R1可以忽略。而在低頻時,R1已不能忽略,故在低頻區時由于R1上的壓降所占的比重增加,將無法維持M的恒定,特別是在電網電壓變化和負載變化時,系統將出現抖動和爬行。 3 變頻器調速系統低頻特性 3.1 諧波分析 由變頻器構成的調速系統,由于變頻器的非線性,電動機定子中除了基波電流外,還有各次諧波電流,由于高次諧波的存在,使電動機損耗和感抗增大,減少了cos,從而影響輸出轉距,并將產生6倍于基波頻率的脈動轉距。 以電流波

4、形中的5次、7次諧波來分析,在三相電動機定子電流中的5次諧波頻率為 F5=5F1 (F1為基波電流頻率),它在電動機氣隙中產生空間負序的磁勢和磁場,這個磁場的轉速 n51為基波電流所產生磁場的轉速n11的5倍,并且沿著與基波磁場反的方向旋轉,由于電動機轉速一定,并假設接近n11,這樣由5次諧波磁勢在轉子內感應出6倍于基波頻率的轉子電流,此電流與氣隙基波磁勢的合成作用產生6倍于基波頻率的脈動轉距。 7次諧波所產生的磁場與基波同相序,但它所產生的旋轉磁場轉速7倍于基波旋轉磁場的轉速,故相應轉子電流諧波與氣隙主磁場的相對轉速也是6倍于基波頻率,也產生一個6倍于基波頻率的脈動轉距。 以上兩個6倍于基波

5、頻率的脈動轉距一齊使電動機的電磁轉距發生脈動,雖然其平均值為零,但脈動轉距使電動機轉速不均勻,在低頻運行時影響最大。 3.2 準方波方式下脈動轉距的產生 分別設1、2為定子磁鏈及轉子磁鏈的空間矢量,在穩態準方波(QSW)運行方式時(橋中晶閘管用1800電角脈沖觸發)1在輸出周期內沿著正六邊形的周邊運動。2沿著與六邊形同心的圓周運動,在準方波運行方式下1和2運動是連續的,但它們且有重大的區別,當矢量2以恒定定子電壓角速度W1旋轉時,矢量1以恒定的線速度沿正六邊形周邊運行,矢量1線速度恒定導致其角速度的變化,進而引起1和2的夾角變化,除此,當1沿著六角形軌跡移動時其幅值在一定程度上也有變化。當電動

6、機空載時,由于處于穩態1與2的夾角與轉距T在W1t=0、/6、/3時為零,而當W1T0、/6、/3時,不為零,它與上面提到的1幅值變化一起引起低頻轉距脈動,其頻率為定子電壓基波的6倍,當電動機帶負載時對應于一個恒定的均值,低頻轉距脈動將疊加于恒定轉距均值之上。 4 系統低頻特性改善措施 4.1 啟動轉距的提升 由于系統在低頻時R1上的壓降影響,使系統的啟動轉距隨W1下降而減小,為此變頻器設有轉距提升功能,該功能可以調整低頻區域電動機的力矩,使之與負荷配合,增大啟動轉距。可選擇自動轉距提升和手動轉距提升模式,其原理是提升定子電壓也就相應提高了啟動轉距,但提升電壓設置過高,將導致電流過大引起電動機

7、飽和、過熱或過電流跳閘。如1336PLUS系列變頻器的轉距提升功能,可自動調整提升電壓,以產生所需的電壓,可根據預定轉距所需的電流來選擇提升電壓,轉距提升在控制電流的同時使電動機處于最佳運行狀態,在選擇手動轉距提升時,要結合實際情況來設定轉距提升值。 4.2 改善低頻轉距脈動 變頻器構成的交流調速系統的低頻轉距脈動直接影響系統動態特性,不論是變頻器的生產廠和系統集成的工程技術人員,都在盡力于改善低頻區脈動這一技術問題.如采用磁通控制方式、正弦波PWM控制方式,它不是按照調制正弦波和載波的交點來控制GTR的導通和關斷,而是始終使異步電動機的磁通接近正弦波,旋轉磁場的軌跡是圓形來決定GTR的導通規

8、律。在很低的頻率下,保證異步電動機在低速時旋轉均勻,從而擴大了變頻調速范圍,抑制異步電動機的振動和噪聲。其圓形旋轉磁場的實現,是通過檢測磁通使控制環節隨時判斷實際磁通超過誤差范圍與否,來改變GTR的工作模式,從而保證旋轉磁場的軌跡呈圓形,以減少轉距脈動。 4.3 圓周PWM方法降低轉距脈動 “圓周”的含義是指定子磁鏈1空間矢量在高斯平面中沿著一個非常接近于圓周的多邊形,其以降低電動機脈動轉距為目的來確定電壓脈沖的寬度和位置。三相逆變器為全波橋式結構,如其運行在這樣一種方式下,當交流輸出端(a、b、c)之一在任何時候接通直流母線(應同時接到另一個直流母線上),這一原理從圖1(a)中可以明顯表示清

9、楚。顯然交流輸出端接到直流母線方式有六種,這就導致定子電壓U1的空間矢量有六個位置,這六個位置如圖1(b)所示,圖1(b)中六種開/關狀態對應著U1的六種位置,圖中粗線位置表示開關1、3、6處于開的位置,投影所產生的瞬時相電壓如下: Va=Vb=1/3Vdc Vc=-2/3Vdc 其余類推,符號Va、Vb、Vc代表三相輸出電壓的瞬時相電壓值,假如Ia+Ib+Ic=0由空間矢量在A、B、C軸上的垂直投影就可得到Va、Vb、Vc,除以上六種開/關狀態外,還有使開關1、3、5或2、4、6同時關斷兩種狀態,在這種情況下,交流輸出端a、b、c接到同一電位上,U1及Ua、Ub、Uc順次變為零,將這種運行方

10、式應用到一個三電平PWM逆變器上可獲得與兩電平PWM相比而言較低的諧波成分。 PWM形式是一種斬波準方波調制,負載上的相電壓由矩形段和零電壓段(U1=0時)組成,在每個電壓脈沖時刻,矢量1以恒定線速度移動,而在零電壓段保持靜止,然而由于矢量2以恒定角速度W1轉動,1和2間的夾角就出現了,因此電壓斬波是引起高頻轉距脈動的主要原因,頻率與輸出電壓矩脈沖頻率相同。這是由于PWM自身固有的,實際上高頻轉矩脈動是很難消除的,并疊加于低頻轉矩脈動之上。為消除系統的低頻轉矩脈動可從以下兩種方式開展工作。 (1) 在電壓脈沖中間點的時刻,矢量1、2間的夾角在穩態運行時對于所有脈沖應保持恒定,消除由變化而產生的對低頻轉矩(頻率為6F1)的影響,在空載情況下=0盡管1的幅值變化,低頻轉矩脈動仍然將被完全消除。 (2) 在恒定的負載時(-cost0)僅僅1幅值的變化引起低頻轉矩脈動,而負載引起2幅值的變化可以忽略,因此必須獲得一個比較接近于圓周的1矢量軌跡。 圓周PWM是利用空載矢量1的空間位置來確定電壓脈沖的中間點,即晶閘管導通段及零電壓段的合理組合,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論