




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、高等數學 考研公式大全 z導數公式:基本積分表:三角函數的有理式積分:一些初等函數: 兩個重要極限:三角函數公式:·誘導公式: 函數角Asincostgctg-sincos-tg-ctg90°-cossinctgtg90°+cos-sin-ctg-tg180°-sin-cos-tg-ctg180°+-sin-costgctg270°-cos-sinctgtg270°+-cossin-ctg-tg360°-sincos-tg-ctg360°+sincostgctg·和差角公式: ·和差化
2、積公式:·倍角公式:·半角公式:·正弦定理: ·余弦定理: ·反三角函數性質:高階導數公式萊布尼茲(Leibniz)公式:中值定理與導數應用:曲率:定積分的近似計算:定積分應用相關公式:空間解析幾何和向量代數:多元函數微分法及應用微分法在幾何上的應用:方向導數與梯度:多元函數的極值及其求法:重積分及其應用:柱面坐標和球面坐標:曲線積分:曲面積分:高斯公式:斯托克斯公式曲線積分與曲面積分的關系:常數項級數:級數審斂法:絕對收斂與條件收斂:冪級數:函數展開成冪級數:一些函數展開成冪級數:歐拉公式:三角級數:傅立葉級數:周期為的周期函數的傅立葉級數:
3、微分方程的相關概念:一階線性微分方程:全微分方程:二階微分方程:二階常系數齊次線性微分方程及其解法:(*)式的通解兩個不相等實根兩個相等實根一對共軛復根二階常系數非齊次線性微分方程高等數學 三角函數篇·平方關系: sin2()+cos2()=1 tan2()+1=sec2() cot2()+1=csc2() ·積的關系: sin=tan*cos cos=cot*sin tan=sin*sec cot=cos*csc sec=tan*csc csc=sec*cot ·倒數關系: tan·cot=1 sin·csc=1 cos·sec=1
4、 直角三角形ABC中, 角A的正弦值就等于角A的對邊比斜邊, 余弦等于角A的鄰邊比斜邊 正切等于對邊比鄰邊, ·三角函數恒等變形公式 ·兩角和與差的三角函數: cos(+)=cos·cos-sin·sin cos(-)=cos·cos+sin·sin sin(±)=sin·cos±cos·sin tan(+)=(tan+tan)/(1-tan·tan) tan(-)=(tan-tan)/(1+tan·tan) ·三角和的三角函數: sin(+)=sin·c
5、os·cos+cos·sin·cos+cos·cos·sin-sin·sin·sin cos(+)=cos·cos·cos-cos·sin·sin-sin·cos·sin-sin·sin·cos tan(+)=(tan+tan+tan-tan·tan·tan)/(1-tan·tan-tan·tan-tan·tan) ·輔助角公式: Asin+Bcos=(A2+B2)(1/2)sin(+t
6、),其中 sint=B/(A2+B2)(1/2) cost=A/(A2+B2)(1/2) tant=B/A Asin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B ·倍角公式: sin(2)=2sin·cos=2/(tan+cot) cos(2)=cos2()-sin2()=2cos2()-1=1-2sin2() tan(2)=2tan/1-tan2() ·三倍角公式: sin(3)=3sin-4sin3() cos(3)=4cos3()-3cos ·半角公式: sin(/2)=±(1-cos)/2) cos(/2)=
7、177;(1+cos)/2) tan(/2)=±(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin ·降冪公式 sin2()=(1-cos(2)/2=versin(2)/2 cos2()=(1+cos(2)/2=covers(2)/2 tan2()=(1-cos(2)/(1+cos(2) ·萬能公式: sin=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2) ·積化和差公式: sin·cos=(1/2)sin(+)+sin(-)
8、 cos·sin=(1/2)sin(+)-sin(-) cos·cos=(1/2)cos(+)+cos(-) sin·sin=-(1/2)cos(+)-cos(-) ·和差化積公式: sin+sin=2sin(+)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/2cos(-)/2 cos-cos=-2sin(+)/2sin(-)/2 ·推導公式 tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos2 1-cos2=2sin2 1+sin=(sin/2+cos
9、/2)2 ·其他: sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函數的角度換算 公式一: 設為任意角,終邊相同的角的同一三角函數的值相等: sin(2k)sin cos(2k)cos tan(2k)tan cot(2k)cot 公式二: 設為任意角,+的三角函數值與的
10、三角函數值之間的關系: sin()sin cos()cos tan()tan cot()cot 公式三: 任意角與 -的三角函數值之間的關系: sin()sin cos()cos tan()tan cot()cot 公式四: 利用公式二和公式三可以得到-與的三角函數值之間的關系: sin()sin cos()cos tan()tan cot()cot 公式五: 利用公式一和公式三可以得到2-與的三角函數值之間的關系: sin(2)sin cos(2)cos tan(2)tan cot(2)cot 公式六: /2±及3/2±與的三角函數值之間的關系: sin(/2) cosc
11、os(/2)sintan(/2)cotcot(/2)tansin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(3/2)coscos(3/2) sintan(3/2)cotcot(3/2)tansin(3/2)coscos(3/2)sintan(3/2) cotcot(3/2) tan(以上kZ) 部分高等內容 :·高等代數中三角函數的指數表示(由泰勒級數易得): sinx=e(ix)-e(-ix)/(2i) cosx=e(ix)+e(-ix)/2 tanx=e(ix)-e(-ix)/ie(ix)+ie(-ix) 泰勒展開有無窮級數,ez=exp(z)1z/1!z2/2!z3/3!z4/4!zn/n! 此時三角函數定義域已推廣至整個復數集。 ·三角函數作為微分方程的解: 對于微分方程組 y=-y''y=y'''',有通解Q,可證明 Q=Asinx+Bcosx,因此也可以從此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025重慶私人車輛租賃合同
- 2025工程公司股權轉讓協議工程公司股權轉讓合同樣本
- 2025合作共贏藍圖-中外合作公司合同精粹
- 2025圖文制作合同范本
- 閘門運行技師(中級)考試題庫及答案(新版)
- 2025試用期間合同
- 2025合同訂立的基本原則及其成立條件
- 2025合同管理操作流程
- 2025中央空調安裝合同范文
- 2025智能照明系統采購合同模板
- 社會調查委托合同三篇
- 癲癇性精神病的護理查房
- 中小學校保安服務方案(技術方案)
- 蘇教版高中數學必修第一冊第1章1.1第2課時集合的表示【授課課件】
- 2024年四川省南充市中考生物試卷真題(含官方答案)
- 勞動教育智慧樹知到期末考試答案章節答案2024年華中師范大學
- 成人高尿酸血癥與痛風食養指南(2024年版)
- 2024年首都機場集團招聘筆試參考題庫附帶答案詳解
- 2023年山東省專升本考試高等數學Ⅲ試題和答案
- 抗血栓藥物臨床應用與案例分析課件
- 吉林省地方教材家鄉小學二年級下冊家鄉教案
評論
0/150
提交評論