在遺憾中成長自己_第1頁
在遺憾中成長自己_第2頁
在遺憾中成長自己_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、在“圓滿”中成長自己有感于區中考一輪復習研討活動泰州市孔橋初級中學 王瑞華3月7日上午,本人格外榮幸在高港試驗學校參與了2014年高港區學校數學一輪復習研討活動,并上了一節解直角三角形及其應用中考一輪復習研討課,期間傾聽了泰州市教研室錢主任和泰州市學校數學名師工作室領銜人陳主任對本節課的深化點評,自感收益匪淺。下面談談我的幾點感受,與同行共享我成長的歡快。一、備課2月18日接到區教研室姚主任的電話,要求在3月7日上午的中考一輪復習研討活動中上一節課,頓感壓力倍增,即刻思考:上什么內容?翻閱最新中考相關資料,定下選題解直角三角形及其應用。定下內容后,我做了幾點預備工作:(1)再次通讀本復習模塊教

2、材和老師參考用書,領悟教材編寫內容和本質;(2)翻閱學習課程標準2011版,吃透標準要求:利用相像的直角三角形,探究并生疏銳角三角函數(sin A,cos A,tan A),知道30,45,60角的三角函數值;會使用計算器由已知銳角求它的三角函數值,由已知三角函數值求它的對應銳角;能用銳角三角函數解直角三角形,能用相關學問解決一些簡潔的實際問題。(3)學習泰州市2014年中考數學考試說明,內容為銳角三角函數(正弦、余弦、正切),運用解三角形學問解決簡潔的實際問題。要求為C級。(4)統計2013年江蘇省13市中考數學試卷及近3年泰州市中考數學試卷中本模塊考試內容,發覺,第一本模塊內容為中考必考內

3、容,其次分值一般為810分,難度屬于中檔題。不斷研讀上述4個文本,深化思考,生疏到本模塊無論是純數學應用,還是實際應用,都是圍繞2個基本圖形(如圖1)開放,解題策略都是轉化和構造,即作BC邊上的高。帶著這些生疏和想法,開頭著手備課。我確定的“復習目標”是(1)梳理并把握直角三角形的邊、角關系,把握銳角三角函數基本特征。(2)能用這些關系來解決簡單幾何圖形中的相關計算及實際生活中的相關問題。依據區教研室的要求,具體流程如圖2,流程中的每塊要求區教研室都有相關規定,在這里就不贅述了,我只想談談我的個人想法。第一部分“課前導學”中的“課前熱身”,通過7道基本題,喚起同學對本模塊基礎學問的回憶,與“學

4、問梳理”中的學問點基本一一對應。讓同學通過做題達到對學問的自主復習,體現“以生為本”的設計理念。這部分內容課前發給同學獨立完成后,老師批閱,準時了解學情,以便對復習內容側重點作適當微調。然后,我以“課前熱身”的第7題為“根”,不斷生長,通過條件變式、結論變式、圖形變式、賜予背景等等,逐步延長,讓同學循著一根線自我刺激與內化,一題多解,多題歸一,強化“四基”,感受“發覺問題、提出問題、分析問題、解決問題”的過程,滲透數學思想方法,讓同學生疏本模塊的學問本質,以求“枝繁葉茂”。接著通過4道“練習反饋”,讓同學獨立思考、生生互導后,進行“信息回授”,老師點評,歸納總結本模塊的核心方法,讓同學不僅完成

5、學問的建構,而且把具體學問轉化為具體的方法,形成力量。題目的選擇基本以課本原題或改編。二、上課上課前,我將同學使用的“作業紙”收齊,認真批閱“課前熱身”,并分析總結歸類。由于我所執教的九(8)同學基礎相對較好,“課前熱身”正確率格外高,故上課時,我只讓同學小組互幫互糾后,給出了兩點友情提示。第一,在解決問題時,正確機敏選用邊角關系;其次,銳角的三角函數值僅僅與角的大小有關,與角所在的直角三角形或一般三角形無關。接著快速轉入第7題,先讓同學對題聯想,看到30、45,你會聯想到什么。積累閱歷,培育直覺思維,通過圖形變式,如圖3,感受解題關鍵是作BC邊上的高,構造直角三角形。利用構造直角三角形,建立

6、直角三角形模型來解決問題的力量,體會一般轉化為特殊的思想方法是解一般三角形時的一種有效方法。然后,我去掉圖形,僅僅給出文字條件。如,(1)已知ABC,B=45,C=30,BC=1+,畫出草圖,并求出AB、AC長。(2)已知ABC中,C=30,AC=,AB=,請同學們畫出草圖并求BC長。設計的意圖是這樣的,依據條件能畫出草圖是同學的一種基本數學力量。同時在上述問題中,同學通過構造直角三角形能直接解出直角三角形,其中BC邊上的高是關鍵量,在解決問題中起到“橋”的作用,通過這個“橋”將這些圖形緊密聯系。同時在解直角三角形時進一步滲透方程思想。最終,讓上述基本圖形賜予實際背景,變式為一道條件不完整的實

7、際問題。首先讓同學自我補充條件,當然通過上面的探究,同學一般會添加BC的長這個條件,而此時老師退一步,補充不同的條件,讓同學通過思考,感受到老師添加的條件和同學添加的條件,本質上是一樣的,這其實也是中考命題改編題目的一種方法。在解決問題的過程中,同學運用多種方法,感受“一題多解”。運用相像學問,不僅達到了學問的橫向聯系,而且使同學理解了相像與銳角三角函數本質的關系。當然本題還培育同學對簡單圖形的識別力量,這些簡單圖形不外乎是由上述中所涉及的基本圖形構成。因此實際問題中,其關鍵在于查找基本圖形。同時,利用實際問題中的一般銳角的三角函數,提高同學的計算力量。通過對基本學問、基本方法、基本閱歷的復習

8、,接下去讓同學獨立完成4道練習,這部分練習我的設計意圖是對上述復習的補充與提煉升華。如,老師對練習反饋(1)(4)分別做方法性的點評。題(1)中沒有直角三角形而要求tanAOB,如何構造直角三角形?題(2)中已有直角三角形,那么將DCB置于RtCDB中思考,還是可將DCB轉化?題(3)中,D放入直角三角形是構造角還是轉移角?題(4)先求出角的度數,然后再求它的銳角三角函數。然后再次強調,在平常學習與復習中,要加強基本圖形與基本方法的積累,以及課本題及做過題目的真正理解把握。老師舉出了“課后精練”B組第2題,是課本習題7.6第7題改編,也是上學期期末考試第23題,圖形如圖4。同時題目中給出一些非

9、特殊角,要擅長觀看轉化成特殊角。老師最終提煉給出“轉化與構造”的思想方法,這種“轉化與構造”思想方法滲透于整個解直角三角形內容中,也是同學學習幾何的一種重要思想方法。當然還有一個目的,就是讓同學明白,課本題的重要性,體會中考命題“題在書外,根在書內”的蘊意。最終一個環節“課后精練”分為A、B、C三個層次,題目的來源還是課本,題目的選擇意圖,還是對上述復習的補充與強化以及延長,如C組的題目由“直角三角形”延長至“斜三角形”,與高中學問與方法連接,達到學問與思想方法及力量的升華。三、問題傾聽專家的現場指導,那是一種精神享受和自我成長的平臺。接下來專家對本節課進行了點評,指出:(1)要合理劃分復習課時及課時內容。復習容量及跨度不能太大,要有利于同學準時內化復習的學問與方法。(2)要合理設計問題與作業。要緊緊扣準復習內容,問題要擅長整合,形成系統,以便生成新問題。(3)要重視學問網絡的建構。這是復習課的特質,通過合理的板書,形成學問網絡。(4)要重視溝通升華的提升。給出思考的時間和空間,讓同學提出復習后的困惑、問題,并掛念同學怎樣解決它。(5)要重視“多

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論