




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第三章 直線與方程一、概念理解:1、傾斜角:找:直線向上方向、x軸正方向; 平行:=0°; 范圍:0°180° 。2、斜率:找k :k=tan (90°); 垂直:斜率k不存在; 范圍: 斜率 k R 。3、 斜率與坐標(biāo): 構(gòu)造直角三角形(數(shù)形結(jié)合); 斜率k值于兩點(diǎn)先后順序無關(guān); 注意下標(biāo)的位置對應(yīng)。4、 直線與直線的位置關(guān)系: 相交:斜率(前提是斜率都存在) 特例-垂直時(shí):<1> ; <2> 斜率都存在時(shí): 。 平行:<1> 斜率都存在時(shí):; <2> 斜率都不存在時(shí):兩直線都與x軸垂直。 重合: 斜率都
2、存在時(shí):;二、方程與公式:1、直線的五個(gè)方程: 點(diǎn)斜式: 將已知點(diǎn)直接帶入即可; 斜截式: 將已知截距直接帶入即可; 兩點(diǎn)式: 將已知兩點(diǎn)直接帶入即可; 截距式: 將已知截距坐標(biāo)直接帶入即可; 一般式: ,其中A、B不同時(shí)為0在距離公式當(dāng)中會(huì)經(jīng)常用到直線的“一般式方程”。2、求兩條直線的交點(diǎn)坐標(biāo):直接將兩直線方程聯(lián)立,解方程組即可(可簡記為“方程組思想”)。3、距離公式: 兩點(diǎn)間距離: 推導(dǎo)方法:構(gòu)造直角三角形“勾股定理”; 點(diǎn)到直線距離: 推導(dǎo)方法:構(gòu)造直角三角形“面積相等”; 平行直線間距離: 推導(dǎo)方法:在y軸截距代入式;4、中點(diǎn)、三分點(diǎn)坐標(biāo)公式:已知兩點(diǎn) AB中點(diǎn): 推導(dǎo)方法:構(gòu)造直角“
3、相似三角形”; AB三分點(diǎn): 靠近A的三分點(diǎn)坐標(biāo) 靠近B的三分點(diǎn)坐標(biāo) 推導(dǎo)方法:構(gòu)造直角“相似三角形”。l 中點(diǎn)坐標(biāo)公式,在求對稱點(diǎn)、第四章圓與方程中,經(jīng)常用到。l 三分點(diǎn)坐標(biāo)公式,用得較少,多見于大題難題。3、 解題指導(dǎo)與易錯(cuò)辨析:1、解析法(坐標(biāo)法): 建立適當(dāng)直角坐標(biāo)系,依據(jù)幾何性質(zhì)關(guān)系,設(shè)出點(diǎn)的坐標(biāo);yxo 依據(jù)代數(shù)關(guān)系(點(diǎn)在直線或曲線上),進(jìn)行有關(guān)代數(shù)運(yùn)算,并得出相關(guān)結(jié)果; 將代數(shù)運(yùn)算結(jié)果,翻譯成幾何中“所求或所要證明”。2、 動(dòng)點(diǎn)P到兩個(gè)定點(diǎn)A、B的距離“最值問題”: 的最小值:找對稱點(diǎn)再連直線,如右圖所示: 的最大值:三角形思想“兩邊之差小于第三邊”; 的最值:函數(shù)思想“轉(zhuǎn)換成一
4、元二次函數(shù),找對稱軸”。3、 直線必過點(diǎn): 含有一個(gè)未知參數(shù)-y=(a-1)x+2a+1 => y=(a-1)(x+2)+3令:x+2=0 => 必過點(diǎn)(-2,3) 含有兩個(gè)未知參數(shù)-(3m-n)x+(m+2n)y-n=0 => m(3x+y)+n(2y-x-1)=0 令:3x+y=0、2y-x-1=0 聯(lián)立方程組求解 => 必過點(diǎn)(-1/7,3/7)4、 易錯(cuò)辨析: 討論斜率的存在性: 解題過程中用到斜率,一定要分類討論:<1>斜率不存在時(shí),是否滿足題意; <2>斜率存在時(shí),斜率會(huì)有怎樣關(guān)系 注意“截距”可正可負(fù),不能“錯(cuò)認(rèn)為”截距就是距離,會(huì)
5、丟解;(求解直線與坐標(biāo)軸圍成面積時(shí),較為常見。) 直線到兩定點(diǎn)距離相等,有兩種情況: <1> 直線與兩定點(diǎn)所在直線平行; <2> 直線過兩定點(diǎn)的中點(diǎn)。(求解過某一定點(diǎn)的直線方程時(shí),較為常見。)一選擇題1. 已知直線經(jīng)過點(diǎn)A(0,4)和點(diǎn)B(1,2),則直線AB的斜率為( )A.3 B.-2 C. 2 D. 不存在2過點(diǎn)且平行于直線的直線方程為( )A BCD3. 在同一直角坐標(biāo)系中,表示直線與正確的是( ) A B C D4若直線x+ay+2=0和2x+3y+1=0互相垂直,則a=( )A B C D5.過(x1,y1)和(x2,y2)兩點(diǎn)的直線的方程是( )L36、若
6、圖中的直線L1、L2、L3的斜率分別為K1、K2、K3則( )L2 A、K1K2K3B、K2K1K3ox C、K3K2K1L1 D、K1K3K2 7、直線2x+3y-5=0關(guān)于直線y=x對稱的直線方程為( )A、3x+2y-5=0 B、2x-3y-5=0C、3x+2y+5=0 D、3x-2y-5=08、與直線2x+3y-6=0關(guān)于點(diǎn)(1,-1)對稱的直線是( )A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=09、直線5x-2y-10=0在x軸上的截距為a,在y軸上的截距為b,則( )A.a=2,b=5; B.a=2,b=; C.a=,b=5;
7、 D.a=,b=.10、直線2x-y=7與直線3x+2y-7=0的交點(diǎn)是( )A (3,-1) B (-1,3) C (-3,-1) D (3,1)11、過點(diǎn)P(4,-1)且與直線3x-4y+6=0垂直的直線方程是( )A 4x+3y-13=0 B 4x-3y-19=0C 3x-4y-16=0 D 3x+4y-8=0二填空題12. 過點(diǎn)(1,2)且在兩坐標(biāo)軸上的截距相等的直線的方程 _;13兩直線2x+3yk=0和xky+12=0的交點(diǎn)在y軸上,則k的值是14、兩平行直線的距離是 。15空間兩點(diǎn)M1(-1,0,3),M2(0,4,-1)間的距離是 三計(jì)算題16、已知三角形ABC的頂點(diǎn)坐標(biāo)為A(
8、-1,5)、B(-2,-1)、C(4,3),M是BC邊上的中點(diǎn)。(1)求AB邊所在的直線方程;(2)求中線AM的長(3)求AB邊的高所在直線方程。17、求與兩坐標(biāo)軸正向圍成面積為2平方單位的三角形,并且兩截距之差為3的直線的方程。18. 直線與直線沒有公共點(diǎn),求實(shí)數(shù)m的值。19求經(jīng)過兩條直線和的交點(diǎn),且分別與直線(1)平行,(2)垂直的直線方程。20、(16分)過點(diǎn)(,)的直線被兩平行直線:與:所截線段的中點(diǎn)恰在直線上,求直線的方程測試題答案1-5 BACAC 6-10 AADBA 11 A 12.y=2x或x+y-3=0 13.±6 14、 15.16、解:(1)由兩點(diǎn)式寫方程得
9、,即 6x-y+11=0或 直線AB的斜率為 直線AB的方程為 即 6x-y+11=0(2)設(shè)M的坐標(biāo)為(),則由中點(diǎn)坐標(biāo)公式得 故M(1,1)(3)因?yàn)橹本€AB的斜率為kAB= 設(shè)AB邊的高所在直線的斜率為k則有所以AB邊高所在直線方程為17解:設(shè)直線方程為則有題意知有又有此時(shí) 18方法(1)解:由題意知方法(2)由已知,題設(shè)中兩直線平行,當(dāng)當(dāng)m=0時(shí)兩直線方程分別為x+6=0,-2x=0,即x=-6,x=0,兩直線也沒有公共點(diǎn),綜合以上知,當(dāng)m=-1或m=0時(shí)兩直線沒有公共點(diǎn)。19解:由,得;與的交點(diǎn)為(1,3)。(1) 設(shè)與直線平行的直線為則,c1。所求直線方程為。方法2:所求直線的斜率,且經(jīng)過點(diǎn)(1,3),求直線的方程為,即。(2) 設(shè)與直線垂
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 淘寶店鋪用戶行為分析與運(yùn)營改進(jìn)服務(wù)協(xié)議
- 包裝食品采購協(xié)議書
- 商鋪柜子轉(zhuǎn)讓協(xié)議書
- 賣菜攤位租賃協(xié)議書
- 員工購買工裝協(xié)議書
- 互聯(lián)網(wǎng)教育背景下教師培訓(xùn)與課程資源共享協(xié)議
- 地名標(biāo)志維護(hù)協(xié)議書
- 抖音火花娛樂內(nèi)容審查與版權(quán)保護(hù)合作協(xié)議
- 司機(jī)安全生產(chǎn)協(xié)議書
- 鹵菜進(jìn)貨合同協(xié)議書
- 【MOOC】基因與健康-鄭州大學(xué) 中國大學(xué)慕課MOOC答案
- 美的集團(tuán)應(yīng)收賬款管理的答辯
- 皮膚科前景規(guī)劃
- 2025屆廣東省華附、省實(shí)、深中、廣雅四校高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析
- 標(biāo)識(shí)標(biāo)牌采購制作合同范例
- 夏縣縣城污水處理提質(zhì)增效-一廠一策-系統(tǒng)化整治方案
- 控制電纜施工方案
- 防性侵安全教育課件
- 增大柱截面加固施工方案
- 《籃球:行進(jìn)間單手肩上投籃》教案(四篇)
- 小學(xué)二年級(jí)數(shù)學(xué)找規(guī)律練習(xí)題及答案
評論
0/150
提交評論