




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2017 年湖北省黃石市中考數(shù)學(xué)二模試卷、選擇題(本大題共 10 小題,每小題 3 分,共 30 分)1.- 2 的倒數(shù)是()A. B .C. - 2D. 22 22下列圖標(biāo),既可以看作是中心對稱圖形又可以看作是軸對稱圖形的是()3.五一假期,黃石市退出了東方山休閑娛樂、傳統(tǒng)文化展演、游園賞景賞花、佛教文化體驗等精品文化活動,共接待旅游總?cè)藬?shù) 9 608 00 人次,將 9 608 00 用科學(xué)記數(shù)法表示為()2345A. 9608X10 B.960.8X10C. 96.08X10D. 9.608X104.下列計算正確的是( )32532一32632A. a +a =aB. a - a =a
2、C. a ?a =aD. a 十 a =a5.如圖是某幾何體的三視圖,該幾何體是()A.三棱柱 B.長方體C.圓錐 D .圓柱O,若 AO=2 DO=4 BO=3,貝 U BC 的長為(7.某校合唱團有 30 名成員,下表是合唱團成員的年齡分布統(tǒng)計表:年齡(單位:歲)13141516B.C.D.2頻數(shù)(單位:名)515x10-x對于不同的 x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是()3C.眾數(shù)、中位數(shù) D .眾數(shù)、方差&已知某圓錐的底面半徑為3cm,母線長 5cm,則它的側(cè)面展開圖的面積為()2 2 2 2A. 30cm B. 15cm C. 30ncm D. 15ncm9.已知兩點
3、A (- 5, yi), B(3, y2)均在拋物線 y=ax +bx+c (0)上,點 C (xo, yo)是該拋物線的頂點.若 yiy2 yo,則 xo的取值范圍是()A. Xo 5 B.Xo 1 C.5vXoV 1 D.2vXoV310.如圖,矩形 ABCD 中, AB=3 BC=5 點 P 是 BC邊上的一個動點 (點 P 不與點 B, C 重合), 現(xiàn)將 PCD 沿直線 PD 折疊,使點 C 落下點 C 處;作/BPC 的平分線交 AB 于點 E.設(shè) BP=x, BE=y,那么 y 關(guān)于 x 的函數(shù)圖象大致應(yīng)為()二、填空題(本大題共 6 小題,每小題 3 分,共 18 分)11 .
4、分解因式:mf 2mx+m=_.12. 分式方程= 的解是_ .X x+113._ 若一元二次方程2x2 3x+k=0 有兩個相等實數(shù)根,則 k 的值是_.14.同時擲兩枚質(zhì)地均勻的骰子,則兩枚骰子點數(shù)的和是9 的概率為 _ .15.如圖,數(shù)學(xué)興趣小組想測量電線桿AB 的高度,他們發(fā)現(xiàn)電線桿的影子恰好落在土坡的坡面 CD 和地面 BC 上,量得 CD=4 米,BC=10 米,CD 與地面成 30角,且此時測得 1 米桿的影長為 2 米,則電線桿的高度約為 _ 米(結(jié)果保留根號)A.平均數(shù)、中位數(shù)B.平均數(shù)、方差D.416.如圖,正方形 ABCD 勺面積為 2 鉅 cm2,對角線交于點 O,以
5、AB AQ 為鄰邊做平行四邊SC5形 AQGB,對角線交于點 C2,以 AB AQ 為鄰邊做平行四邊形 AQC2B,,以此類推,則平行四邊形 AOC6B 的面積為cmi.解答題(本大題共 9 小題,共 72 分)()-1-( 3- =)0-2sin60 +| 二-2|2先化簡,再求值:;十一 + I ,其中 a=二,b=二+1.b -2b+l苗 T已知關(guān)于 x 的方程 x2- 3mx+2(m- 1) =0 的兩根為 劉、X2,且丄+=-,則 m 的值巧七4是多少?21.已知:如圖,在 ABC 中,AB=AC 以 AB 為直徑的OO 交 BC 于點 D,過點 D 作 DEIAC每人的植樹量,并分
6、為四種類型,A: 4 棵;B: 5 棵;C: 6 棵;D: 7 棵,將各類的人數(shù)繪制成扇形圖(如圖 1)和條形圖(如圖 2).回答下列問題:(1)補全條形圖;(2)寫出這 20 名學(xué)生每人植樹量的眾數(shù)、中位數(shù);17.18.19.求不等式組的“整數(shù)解.20.于占JE.(1)4 - 7 棵,活動結(jié)束后隨機抽查了 20 名學(xué)生請說明 DE 是OO 的切線;6(3)請你計算平均數(shù),并估計這260 名學(xué)生共植樹多少棵?ASCA23.某商場經(jīng)營 A 種品牌的玩具,購進時間的單價是30 元,但據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是 40 元時,銷售量是 600 件,而銷售單價每漲 1 元,就會少售出 10 件
7、玩具.(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x 40),請用含x的代數(shù)式表示該玩具的銷售量;(2)若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于 450 件的銷售任 務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?(3)該商場計劃將(2)中所得的利潤的一部分資金采購一批B 種玩具并轉(zhuǎn)手出售, 根據(jù)市場調(diào)查并準(zhǔn)備兩種方案,方案:如果月初出售,可獲利15%并可用本和利再投資 C 種玩具,到月末又可獲利 10%方案:如果只到月末出售可直接獲利30%但要另支付他庫保管費 350 元,請問商場如何使用這筆資金,采用哪種方案獲利較多?24.如圖,在邊長為 2 的正方形 ABCD 中,G
8、是 AD 延長線上的一點,且 DG=AD 動點 M 從 A 點出發(fā),以每秒 1 個單位的速度沿著 ATCG的路線向 G 點勻速運動(M 不與 A, G 重合), 設(shè)運動時間為 t 秒,連接 BM 并延長 AG 于 N.(1)是否存在點 M,使厶 ABM 為等腰三角形?若存在,分析點M 的位置;若不存在,請說明 理由;(2) 當(dāng)點 N 在 AD 邊上時,若 BNL HN NH 交/ CDG 勺平分線于 H,求證:BN=HN(3) 過點 M 分別作 AB AD 的垂線,垂足分別為 E,F(xiàn),矩形 AEMFfAACG 重疊部分的面積 為 S,求S 的最大值.7BC25.如圖,點 A 在函數(shù) y=-:(
9、x 0)圖象上,過點 A 作 x 軸和 y 軸的平行線分別交函數(shù) y= 圖象于點 B, C,直線 BC 與坐標(biāo)軸的交點為 D, E(1) 當(dāng)點 C 的橫坐標(biāo)為 1 時,求點 B 的坐標(biāo);(2) 試問:當(dāng)點 A 在函數(shù) y=:(x 0)圖象上運動時, ABC 的面積是否發(fā)生變化?若不 變,請求出厶 ABC 的面積,若變化,請說明理由.(3) 試說明:當(dāng)點 A 在函數(shù)W (x 0)圖象上運動時,線段 BD 與 CE 的長始終相等.82017 年湖北省黃石市中考數(shù)學(xué)二模試卷參考答案與試題解析一、選擇題(本大題共 10 小題,每小題 3 分,共 30 分)12 的倒數(shù)是()A. B .C. - 2D.
10、 22 2【考點】17:倒數(shù).【分析】根據(jù)倒數(shù)的定義即可求解.【解答】解:-2 的倒數(shù)是-.2故選:A.2下列圖標(biāo),既可以看作是中心對稱圖形又可以看作是軸對稱圖形的是(A.【考點】R5:中心對稱圖形;P3:軸對稱圖形.【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【解答】 解:A、可以看作是中心對稱圖形,不可以看作是軸對稱圖形,故本選項錯誤;B 既可以看作是中心對稱圖形,又可以看作是軸對稱圖形,故本選項正確;C 既不可以看作是中心對稱圖形,又不可以看作是軸對稱圖形,故本選項錯誤;D 既不可以看作是中心對稱圖形,又不可以看作是軸對稱圖形,故本選項錯誤.故選 B.3.五一假期,黃石市退出了東方山
11、休閑娛樂、傳統(tǒng)文化展演、游園賞景賞花、佛教文化體驗等精品文化活動,共接待旅游總?cè)藬?shù) 9 608 00 人次,將 9 608 00 用科學(xué)記數(shù)法表示為()92345A. 9608X10 B.960.8X10C. 96.08X10D. 9.608X10【考點】1I :科學(xué)記數(shù)法一表示較大的數(shù).【分析】 科學(xué)記數(shù)法的表示形式為ax10n的形式,其中 1W|a|v10, n 為整數(shù).確定 n 的值時,要看把原數(shù)變成 a 時,小數(shù)點移動了多少位,n 的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值1 時,n 是正數(shù);當(dāng)原數(shù)的絕對值v1 時,n 是負數(shù).【解答】 解:將 9 608 00 用科學(xué)記數(shù)法表示為:
12、9.608X105.故選:D.4.下列計算正確的是()32532一32632A. a +a =a B. a - a =a C. a ?a =a D. a 十 a =a【考點】48:同底數(shù)幕的除法;35 :合并同類項;46:同底數(shù)幕的乘法.【分析】根據(jù)同類項定義;同底數(shù)幕相乘,底數(shù)不變指數(shù)相加;同底數(shù)幕相除,底數(shù)不變指數(shù)相減,對各選項分析判斷后利用排除法求解.【解答】 解:A、a2與 a3不是同類項,不能合并,故本選項錯誤;B a3與 a2不是同類項,不能合并,故本選項錯誤;C 應(yīng)為 a3?a2=a5,故本選項錯誤;D a3+ a2=a,正確.故選 D.5.如圖是某幾何體的三視圖,該幾何體是(
13、)A.三棱柱B.長方體C.圓錐 D .圓柱【考點】U3:由三視圖判斷幾何體.10【分析】根據(jù)主視圖和左視圖都是寬度相等的長方形,可判斷該幾何體是柱體,再根據(jù)俯視圖的形狀,可判斷柱體是長方體.【解答】解:根據(jù)所給出的三視圖得出該幾何體是長方體;故選 B.116.如圖,AB/ CD AD 與 BC 相交于點 0,若 AO=2 DO=4 BO=3 貝 U BC 的長為(【考點】S4:平行線分線段成比例.長度,再根據(jù) BC=BO+C 即可解決問題.【解答】解:IAB/CD翌=22 ;.瓦=而;/ AO=2 DO=4 BO=3_. =,解得:CO=6CO 4 BC=BO+CO=3+6=9故選 B.7.某
14、校合唱團有 30 名成員,下表是合唱團成員的年齡分布統(tǒng)計表:年齡(單位:歲)13141516頻數(shù)(單位:名)515x10-x對于不同的 x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是()A.平均數(shù)、中位數(shù)B.平均數(shù)、方差C.眾數(shù)、中位數(shù) D .眾數(shù)、方差【考點】W7 方差;V7:頻數(shù)(率)分布表;W2 加權(quán)平均數(shù); W4:中位數(shù);W5 眾數(shù).【分析】由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總?cè)藬?shù),結(jié)合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第 15、16 個數(shù)據(jù)的平均數(shù),可得答案.【解答】 解:由表可知,年齡為 15 歲與年齡為 16 歲的頻數(shù)和為 x+10- x=10,則總?cè)藬?shù)為:5+15+10=
15、30,1 4+1 4故該組數(shù)據(jù)的眾數(shù)為 14 歲,中位數(shù)為:=14 歲,D. 15【分析】由平行線分線段成比例定理,得到利用 AO BO DO 的長度,求出CO的1212即對于不同的 x,關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是眾數(shù)和中位數(shù);13故選 c.&已知某圓錐的底面半徑為3cm,母線長 5cm,則它的側(cè)面展開圖的面積為()2 2 2 2A. 30cm B. 15cm C. 30ncm D. 15ncm【考點】MP 圓錐的計算.【分析】圓錐的側(cè)面積=底面周長X母線長十 2.1 2【解答】 解:底面半徑為 3cm,則底面周長=6ncm,側(cè)面面積=X6n X5=15ncm .2故選 D._n
16、9.已知兩點 A (- 5, yi), B (3,y)均在拋物線 y=ax +bx+c ( 0)上,點 C (xo, yo) 是該拋物線的頂點.若 y1y2 yo,則 xo的取值范圍是()A. x -5 B.x -1 C.-5vxv -1 D.-2vxv3【考點】H5:二次函數(shù)圖象上點的坐標(biāo)特征.【分析】先判斷出拋物線開口方向上,進而求出對稱軸即可求解.【解答】 解:點 C(X0, y0)是拋物線的頂點,y1y2 y,拋物線有最小值,函數(shù)圖象開口向上, a 0; 25a - 5b+c 9a+3b+c, X- 1 X0的取值范圍是 X0- 1 .故選:B.10.如圖,矩形 ABCD 中, AB=
17、3 BC=5 點 P 是 BC 邊上的一個動點 (點 P 不與點 B, C 重合), 現(xiàn)將PCD 沿直線 PD 折疊,使點 C 落下點 C 處;作/ BPC 的平分線交 AB 于點 E.設(shè) BP=x, BE=y,那么 y關(guān)于 x 的函數(shù)圖象大致應(yīng)為()2a1,14性質(zhì).【分析】根據(jù)翻折變換的性質(zhì)可得/CPD= CPD 根據(jù)角平分線的定義可得/ BPE=ZCPE 然后求出/BPE+ZCPD=90 ,再根據(jù)直角三角形兩銳角互余求出/ CPD+Z PDC=90 ,從而得 到/ BPEN PDC 根據(jù)兩組角對應(yīng)相等的三角形相似求出 PCDD EBP 相似,根據(jù)相似三角 形對應(yīng)邊成比例列式求出 y與 x
18、 的關(guān)系式,再根據(jù)二次函數(shù)的圖象解答即可.【解答】解:由翻折的性質(zhì)得,/ CPD2CPD/ PE 平分/ BPC,/BPENCPE/BPE+Z CPD=90,/C=90, ZCPD+ZPDC=90, ZBPE=ZPDCPCDAEBP,BE=PBPC_CD y=x (5 - x) =-(x_ | )332函數(shù)圖象為 C 選項圖象.故選:C.、填空題(本大題共 6 小題,每小題 3 分,共 18 分)11.分解因式:mf 2mx+m= m( x - 1)215【考點】55:提公因式法與公式法的綜合運用.【分析】首先提取公因式 m 進而利用完全平方公式分解因式得出即可.【解答】 解:- 2mx+m=
19、( x2- 2x+1) =m(x- 1)2.12分式方程 ;一的解是 x=- 2.yE+1【考點】B3:解分式方程.【分析】分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到 x 的值,經(jīng)檢驗即可得到分式方程的解.【解答】 解:去分母得:4x+4=2x,解得:x= - 2,經(jīng)檢驗 x=- 2 是分式方程的解,故答案為:x= - 213. 若一元二次方程 2x2- 3x+k=0 有兩個相等實數(shù)根,則 k 的值是 一.【考點】AA 根的判別式.【分析】根據(jù)判別式的意義得到厶 =(-3)2- 4X2Xk=0 ,然后解方程即可.【解答】 解:根據(jù)題意得厶=(-3)2-4X2Xk=0,解得 k=.D9故
20、答案為一O14.同時擲兩枚質(zhì)地均勻的骰子,則兩枚骰子點數(shù)的和是9 的概率為【考點】X6:列表法與樹狀圖法.【分析】畫樹狀圖展示所有 36 種等可能的結(jié)果數(shù),再找出兩枚骰子點數(shù)的和是9 的結(jié)果數(shù),然后根據(jù)概率公式求解.【解答】解:畫樹狀圖為:故答案為:m (x - 1)1612 3 4 5 6所以兩枚骰子點數(shù)的和是9的概率土, 故答案為:15如圖,數(shù)學(xué)興趣小組想測量電線桿AB 的高度,他們發(fā)現(xiàn)電線桿的影子恰好落在土坡的坡面 CD 和地面 BC 上,量得 CD=4 米,BC=10 米,CD 與地面成 30角,且此時測得 1 米桿的 影長為 2 米,則電線桿的高度約為(7+ 一)米(結(jié)果保留根號)B
21、r【考點】SA 相似三角形的應(yīng)用.【分析】過 D 作 DE 丄 BC 的延長線于 E,連接 AD 并延長交 BC 的延長線于 F,根據(jù)直角三角形 30角所對的直角邊等于斜邊的一半求出DE 再根據(jù)勾股定理求出 CE 然后根據(jù)同時同地物高與影長成正比列式求出 EF,再求出 BF,再次利用同時同地物高與影長成正比列式求解 即可.【解答】 解:如圖,過 D 作 DEL BC 的延長線于 E,連接 AD 并延長交 BC 的延長線于 F,/ CD=4 米,CD 與地面成 30角, DE= CD= X 4=2 米,2 2根據(jù)勾股定理得,CE=JLLL 八“ 丁=2 . 米,/ 1 米桿的影長為 2 米,匹=
22、丄 EF =,EF=2DE=X 2=4 米,BF=BC+CE+EF=10+2=+4= (14+2 二)米,共有 36 種等可能的結(jié)果數(shù),其中兩枚骰子點數(shù)的和是9 的結(jié)果數(shù)為 4,17匚=-麗=2, AB= (14+2 -) = (7+ 二)米.【考點】LE:正方形的性質(zhì);L5:平行四邊形的性質(zhì).【分析】 設(shè)平行四邊形 ABCO 的面積為 S,推出 SAAB0=Jj-Si,正方形;設(shè) ABGQ 為平行四邊形為 S2,由ABO= S2,又& ABO:探究規(guī)律后即可解決問題.【解答】 解:設(shè)平行四邊形 ABCO 的面積為 Si, -SAABO=Si,2又TSAABO= S正方形,4Si=S正
23、方形,設(shè) ABGQ 為平行四邊形為 S2,SAABO=_ S2,16.如圖,正方形 ABCD 勺面積為 2cm2,對角線交于點 0 形AOGB,對角線交于點 02,以 AB AO 為鄰邊做平行四邊形以 AB AO 為鄰邊做平行四邊AQC2B,,以此類推,則平行四邊形 AOGB 的面積為I cm?.2又SAABO=,S正方形,推出 A.sS正方形, 推出 S2= . S正方形, 觀察故答案為:(7+ ).18又TSAABO2=. S正方形,19 S2=S4故答案為;三、解答題(本大題共9 小題,共 72 分)17. ( .)1-( 3 )0-2sin60 +|2|【考點】2C:實數(shù)的運算;6E:
24、零指數(shù)幕;6F:負整數(shù)指數(shù)幕;T5:特殊角的三角函數(shù)值.【分析】首先計算乘方、乘法,然后從左向右依次計算,求出算式的值是多少即可.【解答】解:(-)-1-( 3 -_)0-2sin60 +| 一 -2|=2 - 1 - 2X+2 -二k-r=1 - =+2-二=3 - 2 -【分【解先根據(jù)分式的混合運算順序和法則化簡原式,再將“(a-1) (a+1) h-11解:原式=?+(b-1)2a+1 b-1a、b 的值代入求解可得.a_l+b-1 b-1同理:設(shè) ABGQ 為平行四邊形為2018先化簡,再求值:2+-,其中八.6D:分式的化簡求值.【考點】21當(dāng)a= -,b= -+1 時,19.求不等
25、式組的 整數(shù)解.|2X【考點】CC 一元一次不等式組的整數(shù)解.【分析】先求出不等式的解,然后根據(jù)大大取大,小小取小,大小小大中間找,大大小小解不了,的口訣求出不等式組的解,進而求出整數(shù)解.解不等式得 x;7不等式組的解集為: x 40),請用含 x的代數(shù)式表示該玩具的銷 售量;(2)若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于 450 件的銷售任 務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?(3)該商場計劃將(2)中所得的利潤的一部分資金采購一批B 種玩具并轉(zhuǎn)手出售, 根據(jù)市場調(diào)查并準(zhǔn)備兩種方案,方案:如果月初出售,可獲利15%并可用本和利再投資 C 種玩具,到月末又可獲利
26、 10%方案:如果只到月末出售可直接獲利30%但要另支付他庫保管費 350 元,請問商場如何使用這筆資金,采用哪種方案獲利較多?【考點】HE 二次函數(shù)的應(yīng)用; AD: 元二次方程的應(yīng)用.【分析】(1)根據(jù)銷售量由原銷量-因價格上漲而減少的銷量可得;(2)根據(jù)利潤=銷售量X每件的利潤,即可解決問題,根據(jù)題意確定自變的取值范圍,再根 據(jù)二次函數(shù)的性質(zhì),即可解決問題;(3) 設(shè)取用資金為 a 元,先表示出兩種方案的獲取利潤表達式,再分類討論可得.【解答】解:(1)根據(jù)題意,得:銷售單價為x 元時,銷售量為 600- 10 (x-40) =1000-BCD類型2510 x ;(2)由題意可得,w=(X
27、-30)600-(x-40)X10化簡,得w=- 10 x+1300X- 30000即 w 與 x 的函數(shù)關(guān)系式是: w=- 10X2+1300X- 30000= - 10 (x- 65)2+12250,1000-10 x45044 x=11250;(3)設(shè)取用資金為 a 元,則:yi=a (1+15% (1+10% - a=0.265a ;y2=a (1+30% - 350 - a=0.3a - 350;當(dāng) y1=y2時,即 0.265a=0.3a - 350,解得 a=10000,此時獲利相同;當(dāng) y1 y2時,即 0.265a 0.3a - 350,解得 av10000,此時獲利多;當(dāng)
28、y1vy2時,即 0.265av0.3a - 350,解得 10000vav11250,此時獲利多.24.如圖,在邊長為 2 的正方形 ABCD 中, G 是 AD 延長線上的一點,且 DG=AD 動點 M 從 A 點出發(fā),以每秒 1 個單位的速度沿著 ATCG的路線向 G 點勻速運動(M 不與 A, G 重合), 設(shè)運動時間為 t 秒,連接 BM 并延長 AG 于 N.(1)是否存在點M,使厶ABM為等腰三角形?若存在,分析點M 的位置; 若不存在, 請說明 理由;(2) 當(dāng)點 N 在 AD 邊上時,若 BNL HN NH 交/ CDG 勺平分線于 H,求證:BN=HN(3) 過點 M 分別
29、作 AB AD 的垂線,垂足分別為 E, F,矩形 AEMFfAACG 重疊部分的面積 為 S,求 S的最大值.26【考點】LO 四邊形綜合題.【分析】(1)四種情況:當(dāng)點 M 為 AC 的中點時,AM=BM 當(dāng)點 M 與點 C 重合時,AB=BM 當(dāng)點 M 在 AC 上,且 AM=2 時,AM=AB 當(dāng)點 M 在 AC 上,且 AM=BIM 寸,AM=時;當(dāng)點 M 為 CG 的中點時,AM=BM ABM 為等腰三角形;(2 )在AB上截取 AK=AN連接KN; 由正方形的性質(zhì)得出/ ADG=90, AB=AD / CDG=90 , 得出BK=DN先證出/ BKN2NDH 再證出/ ABN 玄
30、 DNH 由 ASA 證明 BNANHD 得出 BN=NH 即可;(3)當(dāng) M 在 AC 上時,即 Ovt 2時, AMF 為等腰直角三角形,得出 AF=FM= t ,2求出 S=AF?FM= t2;當(dāng) t=2 二時,即可求出 S 的最大值;當(dāng) M 在 CG 上時,即2 頁vtv4 忑時,先證明厶 ACDAGCD 得出/ ACDMGCD=45 ,求出/ACM=90,證出 MFG 為等腰直角三角形,得出FG=MG?cos45=4-丄二 t,得出 S=S2 ACG_SCMJ-SFMG,S 為 t 的二次函數(shù),即可求出結(jié)果.【解答】(1)解:存在;當(dāng)點 M 為 AC 的中點時,AM=BM 則厶 ABM 為等腰三角形;當(dāng)點 M 與點 C 重合時,AB=B 皿則厶 ABM等腰三角形;當(dāng)點 M 在 AC 上,且 AM=2 時,AM=AB 則厶 ABM 為等腰三角形;當(dāng)點 M 在 AC 上,且 AM=BM 寸,AM=AC=;X2 二=二時,則 ABM等腰三角形;Liiiiiii當(dāng)點 M 為 CG 的中點時,AM=BM 則厶 ABM等腰三角形;(2)證明:在 AB 上截取 AK=AN 連接 KN;如圖 1 所示:四邊形 ABCD 是正方形,/ADC=90 , AB=AD/CDG=90 ,/ BK=AB- AK, ND=A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石油化工企業(yè)經(jīng)營管理方案
- 構(gòu)建美育教育新生態(tài)的策略及實施路徑
- 高中生自我控制與學(xué)業(yè)拖延的關(guān)系研究-學(xué)習(xí)投入的中介作用
- 大數(shù)據(jù)在旅游成本控制中的應(yīng)用
- 關(guān)鍵崗位考試試題及答案
- 防暑安全教育試題及答案
- 刀工考試試題及答案
- 測試緣分的題目及答案
- 學(xué)生規(guī)則意識的培養(yǎng)
- 吞咽障礙篩查-反復(fù)唾液吞咽試驗
- DZ 0141-1994地質(zhì)勘查坑探規(guī)程
- 2024 - 2025學(xué)年浙美版一年級下冊美術(shù)期末考試試卷及答案
- 口腔合伙人合同協(xié)議書
- 2025年中國車載顯示行業(yè)市場前景預(yù)測及投資價值評估分析報告
- DB32T3436-2018 智能信包箱運營管理服務(wù)規(guī)范
- 地下工程施工安全防范措施
- 商業(yè)銀行領(lǐng)導(dǎo)力提升培訓(xùn)心得體會
- 校招中建八局面試題目及答案
- 高效規(guī)劃優(yōu)化工業(yè)園區(qū)的基礎(chǔ)設(shè)施布局
- 新能源汽車基礎(chǔ)知識培訓(xùn)課件
- 客戶入廠安全培訓(xùn)
評論
0/150
提交評論