高等數學-11章無窮級數_第1頁
高等數學-11章無窮級數_第2頁
高等數學-11章無窮級數_第3頁
高等數學-11章無窮級數_第4頁
高等數學-11章無窮級數_第5頁
已閱讀5頁,還剩44頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、第十一章 無窮級數教學目的: 1理解常數項級數收斂、發散以及收斂級數的和的概念,掌握級數的基本性質及收斂的必要條件。2掌握幾何級數與P級數的收斂與發散的條件。3掌握正項級數收斂性的比較判別法和比值判別法,會用根值判別法。4掌握交錯級數的萊布尼茨判別法。5了解任意項級數絕對收斂與條件收斂的概念,以及絕對收斂與條件收斂的關系。6了解函數項級數的收斂域及和函數的概念。7理解冪級數收斂半徑的概念,并掌握冪級數的收斂半徑、收斂區間及收斂域的求法。8了解冪級數在其收斂區間內的一些基本性質(和函數的連續性、逐項微分和逐項積分),會求一些冪級數在收斂區間內的和函數,并會由此求出某些常數項級數的和。9了解函數展

2、開為泰勒級數的充分必要條件。10掌握,和的麥克勞林展開式,會用它們將一些簡單函數間接展開成冪級數。11. 了解傅里葉級數的概念和函數展開為傅里葉級數的狄利克雷定理,會將定義在-l,l上的函數展開為傅里葉級數,會將定義在0,l上的函數展開為正弦級數與余弦級數,會寫出傅里葉級數的和的表達式。教學重點 : 1、級數的基本性質及收斂的必要條件。 2、正項級數收斂性的比較判別法、比值判別法和根值判別; 3、交錯級數的萊布尼茨判別法; 4、冪級數的收斂半徑、收斂區間及收斂域; 5、,和的麥克勞林展開式; 6、傅里葉級數。教學難點:1、 比較判別法的極限形式;2、 萊布尼茨判別法;3、 任意項級數的絕對收斂

3、與條件收斂;4、 函數項級數的收斂域及和函數;5、 泰勒級數;6、 傅里葉級數的狄利克雷定理。§11. 1 常數項級數的概念和性質 一、常數項級數的概念 常數項級數: 給定一個數列 u1, u2, u3, × × ×, un, × × ×, 則由這數列構成的表達式 u1 + u2 + u3 + × × ×+ un + × × ×叫做常數項)無窮級數, 簡稱常數項)級數, 記為, 即 , 其中第n項u n 叫做級數的一般項. 級數的部分和: 作級數的前n項和 稱為級數

4、的部分和. 級數斂散性定義: 如果級數的部分和數列有極限s, 即, 則稱無窮級數收斂, 這時極限s叫做這級數的和, 并寫成 ; 如果沒有極限, 則稱無窮級數發散. 余項: 當級數收斂時, 其部分和s n是級數的和s的近似值, 它們之間的差值 rn=s-sn=un+1+un+2+ × × ×叫做級數的余項. 例1 討論等比級數(幾何級數) 的斂散性, 其中a¹0, q叫做級數的公比. 例1 討論等比級數(a¹0)的斂散性. 解 如果q¹1, 則部分和 . 當|q|<1時, 因為, 所以此時級數收斂, 其和為. 當|q|>1時

5、, 因為, 所以此時級數發散. 如果|q|=1, 則當q=1時, sn =na®¥, 因此級數發散; 當q=-1時, 級數成為 a-a+a-a+ × × ×, 時|q|=1時, 因為sn 隨著n為奇數或偶數而等于a或零, 所以sn的極限不存在, 從而這時級數也發散. 綜上所述, 如果|q|<1, 則級數收斂, 其和為; 如果|q|³1, 則級數發散. 僅當|q|<1時, 幾何級數a¹0)收斂, 其和為. 例2 證明級數 1+2+3+× × ×+n+× × 

6、5;是發散的. 證 此級數的部分和為 . 顯然, , 因此所給級數是發散的. 例3 判別無窮級數 的收斂性. 解 由于 , 因此 從而 , 所以這級數收斂, 它的和是1. 例3 判別無窮級數的收斂性. 解 因為 , 從而 , 所以這級數收斂, 它的和是1. 提示: . 二、收斂級數的基本性質 性質1 如果級數收斂于和s, 則它的各項同乘以一個常數k所得的級數也收斂, 且其和為ks. 性質1 如果級數收斂于和s, 則級數也收斂, 且其和為ks. 性質1 如果, 則. 這是因為, 設與的部分和分別為sn與sn, 則 . 這表明級數收斂, 且和為ks. 性質2 如果級數、分別收斂于和s、s, 則級數

7、也收斂, 且其和為s±s. 性質2 如果、, 則. 這是因為, 如果、的部分和分別為sn、sn、tn, 則 . 性質3 在級數中去掉、加上或改變有限項, 不會改變級數的收斂性. 比如, 級數是收斂的, 級數也是收斂的, 級數也是收斂的. 性質4 如果級數收斂, 則對這級數的項任意加括號后所成的級數仍收斂, 且其和不變. 應注意的問題: 如果加括號后所成的級數收斂, 則不能斷定去括號后原來的級數也收斂. 例如, 級數 1-1)+1-1) +× × ×收斂于零, 但級數1-1+1-1+× × ×卻是發散的. 推論: 如果加括號后

8、所成的級數發散, 則原來級數也發散. 級數收斂的必要條件: 性質5 如果收斂, 則它的一般項un 趨于零, 即. 性質5 如果收斂, 則. 證 設級數的部分和為sn, 且, 則 . 應注意的問題: 級數的一般項趨于零并不是級數收斂的充分條件. 例4 證明調和級數 是發散的. 例4 證明調和級數是發散的. 證 假若級數收斂且其和為s, sn是它的部分和. 顯然有及. 于是. 但另一方面, , 故, 矛盾. 這矛盾說明級數必定發散. §11. 2 常數項級數的審斂法 一、正項級數及其審斂法 正項級數: 各項都是正數或零的級數稱為正項級數. 定理1 正項級數收斂的充分必要條件它的部分和數列

9、sn有界. 定理2(比較審斂法)設和都是正項級數, 且un£vn (n=1, 2, × × × ). 若級數收斂, 則級數收斂; 反之, 若級數發散, 則級數發散. 定理2(比較審斂法) 設和都是正項級數, 且un£vn(k>0, "n³N). 若收斂, 則收斂; 若發散, 則發散. 設Sun和Svn都是正項級數, 且un£kvn(k>0, "n³N). 若級數Svn收斂, 則級數Sun收斂; 反之, 若級數Sun發散, 則級數Svn發散. 證 設級數收斂于和s, 則級數的部分和 s

10、n=u1+u2+ × × × +un£v1+ v2+ × × × +vn£s (n=1, 2, × × ×), 即部分和數列sn有界, 由定理1知級數收斂. 反之, 設級數發散, 則級數必發散. 因為若級數收斂, 由上已證明的結論, 將有級數也收斂, 與假設矛盾. 證 僅就un£vn (n=1, 2, × × × )情形證明. 設級數Svn收斂, 其和為s, 則級數Sun的部分和 sn=u1+ u2+ × × × +

11、 un£v1+v2+ × × × +vn£s (n=1, 2, × × ×), 即部分和數列sn有界. 因此級數Sun收斂. 反之, 設級數Sun發散, 則級數Svn必發散. 因為若級數Svn收斂, 由上已證明的結論, 級數Sun也收斂, 與假設矛盾. 推論 設和都是正項級數, 如果級數收斂, 且存在自然數N, 使當n³N時有un£kvn(k>0)成立, 則級數收斂; 如果級數發散, 且當n³N時有un³kvn(k>0)成立, 則級數發散. 例1 討論p-級數 的

12、收斂性, 其中常數p>0. 例1 討論p-級數的收斂性. 解 設p£1. 這時, 而調和級數發散, 由比較審斂法知, 當p£1時級數發散. 設p>1. 此時有 (n=2, 3, × × ×). 對于級數, 其部分和 . 因為. 所以級數收斂. 從而根據比較審斂法的推論1可知, 級數當p>1時收斂. 綜上所述, p-級數當p>1時收斂, 當p£1時發散. 解 當p£1時, , 而調和級數發散, 由比較審斂法知, 當p£1時級數發散. 當p>1時, (n=2, 3, × 

13、5; ×). 而級數是收斂的, 根據比較審斂法的推論可知, 級數當p>1時收斂.提示: 級數的部分和為 . 因為, 所以級數收斂. p-級數的收斂性: p-級數當p>1時收斂, 當p£1時發散. 例2 證明級數是發散的. 證 因為, 而級數是發散的, 根據比較審斂法可知所給級數也是發散的. 定理3(比較審斂法的極限形式) 設和都是正項級數, 如果(0<l<+¥), 則級數和級數同時收斂或同時發散. 定理3(比較審斂法的極限形式) 設和都是正項級數, (1)如果(0£l<+¥), 且級數收斂, 則級數收斂; (2)如

14、果, 且級數發散, 則級數發散. 定理3(比較審斂法的極限形式) 設Sun和Svn都是正項級數, (1)如果lim(un/vn)=l(0£l<+¥), 且Svn收斂, 則Sun收斂; (2)如果lim(un/vn)=l(0<l£+¥), 且Svn發散, 則Sun發散. 證明 由極限的定義可知, 對, 存在自然數N, 當n>N時, 有不等式 , 即, 再根據比較審斂法的推論1, 即得所要證的結論. 例3 判別級數的收斂性. 解 因為, 而級數發散, 根據比較審斂法的極限形式, 級數發散. 例4 判別級數的收斂性. 解 因為, 而級數收斂,

15、 根據比較審斂法的極限形式, 級數收斂. 定理4(比值審斂法, 達朗貝爾判別法) 若正項級數的后項與前項之比值的極限等于r: , 則當r<1時級數收斂; 當r>1(或)時級數發散; 當r =1時級數可能收斂也可能發散. 定理4(比值審斂法, 達朗貝爾判別法) 若正項級數滿足, 則當r<1時級數收斂; 當r>1(或)時級數發散. 當r =1時級數可能收斂也可能發散. 定理4(比值審斂法, 達朗貝爾判別法)設為正項級數, 如果, 則當r<1時級數收斂; 當r>1(或)時級數發散; 當r =1時級數可能收斂也可能發散. 例5 證明級數是收斂的. 解 因為, 根據比

16、值審斂法可知所給級數收斂. 例6 判別級數的收斂性. 解 因為, 根據比值審斂法可知所給級數發散. 例7 判別級數的收斂性. 解 . 這時r=1, 比值審斂法失效, 必須用其它方法來判別級數的收斂性. 因為, 而級數收斂, 因此由比較審斂法可知所給級數收斂. 解 因為, 而級數收斂, 因此由比較審斂法可知所給級數收斂. 提示: , 比值審斂法失效. 因為, 而級數收斂, 因此由比較審斂法可知所給級數收斂. 定理5(根值審斂法, 柯西判別法) 設是正項級數, 如果它的一般項un的n次根的極限等于r: , 則當r<1時級數收斂; 當r>1(或)時級數發散; 當r=1時級數可能收斂也可能

17、發散. 定理5(根值審斂法, 柯西判別法) 若正項級數滿足, 則當r<1時級數收斂; 當r>1(或)時級數發散. 當r=1時級數可能收斂也可能發散. 定理5(根值審斂法, 柯西判別法) 設為正項級數, 如果 , 則當r<1時級數收斂; 當r>1(或)時級數發散; 當r=1時級數可能收斂也可能發散. 例8 證明級數是收斂的. 并估計以級數的部分和sn近似代替和s所產生的誤差. 解 因為, 所以根據根值審斂法可知所給級數收斂. 以這級數的部分和sn 近似代替和s所產生的誤差為 + . 例6判定級數的收斂性. 解 因為 , 所以, 根據根值審斂法知所給級數收斂. 定理6(極限

18、審斂法) 設為正項級數, (1)如果, 則級數發散; (2)如果p>1, 而, 則級數收斂. 例7 判定級數的收斂性. 解 因為, 故 , 根據極限審斂法, 知所給級數收斂. 例8 判定級數的收斂性. 解 因為 , 根據極限審斂法, 知所給級數收斂. 二、交錯級數及其審斂法 交錯級數: 交錯級數是這樣的級數, 它的各項是正負交錯的. 交錯級數的一般形式為, 其中. 例如, 是交錯級數, 但不是交錯級數. 定理6(萊布尼茨定理) 如果交錯級數滿足條件: (1)un³un+1 (n=1, 2, 3, × × ×); (2), 則級數收斂, 且其和s&#

19、163;u1, 其余項rn的絕對值|rn|£un+1. 定理6(萊布尼茨定理) 如果交錯級數滿足: (1); (2), 則級數收斂, 且其和s£u1, 其余項rn的絕對值|rn|£un+1. 簡要證明: 設前n項部分和為sn. 由s2n=(u1-u2)+(u3-u4)+ × × × +(u2n 1-u2n), 及 s2n=u1-(u2-u3)+(u4-u5)+ × × × +(u2n-2-u2n-1)-u2n 看出數列s2n單調增加且有界(s2n<u1), 所以收斂. 設s2n®s(n&#

20、174;¥), 則也有s2n+1=s2n+u2n+1®s(n®¥), 所以sn®s(n®¥). 從而級數是收斂的, 且sn<u1. 因為 |rn|=un+1-un+2+× × ×也是收斂的交錯級數, 所以|rn|£un+1. 例9 證明級數收斂, 并估計和及余項. 證 這是一個交錯級數. 因為此級數滿足 (1)(n=1, 2,× × ×), (2), 由萊布尼茨定理, 級數是收斂的, 且其和s<u1=1, 余項. 三、絕對收斂與條件收斂: 絕對

21、收斂與條件收斂: 若級數收斂, 則稱級數絕對收斂; 若級數收斂, 而級數發散, 則稱級條件收斂. 例10 級數是絕對收斂的, 而級數是條件收斂的. 定理7 如果級數絕對收斂, 則級數必定收斂. 值得注意的問題: 如果級數發散, 我們不能斷定級數也發散. 但是, 如果我們用比值法或根值法判定級數發散, 則我們可以斷定級數必定發散. 這是因為, 此時|un|不趨向于零, 從而un也不趨向于零, 因此級數也是發散的. 例11 判別級數的收斂性. 解 因為|, 而級數是收斂的, 所以級數也收斂, 從而級數絕對收斂. 例12 判別級數的收斂性. 解: 由, 有, 可知, 因此級數發散. § 1

22、1. 3 冪級數 一、函數項級數的概念 函數項級數: 給定一個定義在區間I 上的函數列un(x), 由這函數列構成的表達式 u1(x)+u2(x)+u3(x)+ × × × +un(x)+ × × ×稱為定義在區間I上的(函數項)級數, 記為. 收斂點與發散點: 對于區間I內的一定點x0, 若常數項級數收斂, 則稱點x0是級數的收斂點. 若常數項級數發散, 則稱點x0是級數的發散點. 收斂域與發散域: 函數項級數的所有收斂點的全體稱為它的收斂域, 所有發散點的全體稱為它的發散域. 和函數: 在收斂域上, 函數項級數的和是x的函數s(x

23、), s(x)稱為函數項級數的和函數, 并寫成. un(x)是的簡便記法, 以下不再重述. 在收斂域上, 函數項級數un(x)的和是x的函數s(x), s(x)稱為函數項級數un(x)的和函數, 并寫成s(x)=un(x). 這函數的定義就是級數的收斂域, 部分和: 函數項級數的前n項的部分和記作sn(x), 函數項級數un(x)的前n項的部分和記作sn(x), 即 sn(x)= u1(x)+u2(x)+u3(x)+ × × × +un(x). 在收斂域上有或sn(x)®s(x)(n®¥) . 余項: 函數項級數的和函數s(x)與部分

24、和sn(x)的差 rn (x)=s(x)-sn(x)叫做函數項級數的余項. 函數項級數un(x)的余項記為rn (x), 它是和函數s(x)與部分和sn(x)的差 rn (x)=s(x)-sn(x). 在收斂域上有. 二、冪級數及其收斂性 冪級數: 函數項級數中簡單而常見的一類級數就是各項都冪函數的函數項級數, 這種形式的級數稱為冪級數, 它的形式是 a0+a1x+a2x2+ × × × +anxn+ × × × , 其中常數a0, a1, a2, × × × , an , × × &

25、#215;叫做冪級數的系數. 冪級數的例子: 1+x+x2+x3+ × × × +xn + × × × , . 注: 冪級數的一般形式是 a0+a1(x-x0)+a2(x-x0)2+ × × × +an(x-x0)n+ × × × , 經變換t=x-x0就得a0+a1t+a2t2+ × × × +antn+ × × × . 冪級數 1+x+x2+x3+ × × × +xn + ×

26、; × × 可以看成是公比為x的幾何級數. 當|x|<1時它是收斂的; 當|x|³1時, 它是發散的. 因此它的收斂域為(-1, 1), 在收斂域內有. 定理1 (阿貝爾定理) 如果級數當x=x0 (x0¹0)時收斂, 則適合不等式|x|<|x0|的一切x使這冪級數絕對收斂. 反之, 如果級數當x=x0時發散, 則適合不等式|x|>|x0|的一切x使這冪級數發散. 定理1 (阿貝爾定理) 如果級數anxn當x=x0 (x0¹0)時收斂, 則適合不等式|x|<|x0|的一切x使這冪級數絕對收斂. 反之, 如果級數anxn當

27、x=x0時發散, 則適合不等式|x|>|x0|的一切x使這冪級數發散. 提示: anxn是的簡記形式. 證 先設x0是冪級數的收斂點, 即級數收斂. 根據級數收斂的必要條件, 有, 于是存在一個常數M, 使| anx0n |£M(n=0, 1, 2, × × ×). 這樣級數的的一般項的絕對值. 因為當|x|<|x0|時, 等比級數收斂, 所以級數收斂, 也就是級數絕對收斂. 簡要證明 設anxn在點x0收斂, 則有anx0n®0(n®¥) , 于是數列anx0n有界, 即存在一個常數M, 使| anx0n |&

28、#163;M(n=0, 1, 2, × × ×). 因為 , 而當時, 等比級數收斂, 所以級數|anxn|收斂, 也就是級數anxn絕對收斂. 定理的第二部分可用反證法證明. 倘若冪級數當x=x0時發散而有一點x1適合|x1|>|x0|使級數收斂, 則根據本定理的第一部分, 級數當x=x0時應收斂, 這與所設矛盾. 定理得證. 推論 如果級數不是僅在點x=0一點收斂, 也不是在整個數軸上都收斂, 則必有一個完全確定的正數R存在, 使得 當|x|<R時, 冪級數絕對收斂; 當|x|>R時, 冪級數發散; 當x=R與x=-R時, 冪級數可能收斂也可

29、能發散. 收斂半徑與收斂區間: 正數通常叫做冪級數的收斂半徑. 開區間(-R, R)叫做冪級數的收斂區間. 再由冪級數在x=±R處的收斂性就可以決定它的收斂域. 冪級數的收斂域是(-R, R)(或-R, R)、(-R, R、-R, R之一. 規定: 若冪級數只在x=0收斂, 則規定收斂半徑R=0 , 若冪級數對一切x都收斂, 則規定收斂半徑R=+¥, 這時收斂域為(-¥, +¥). 定理2 如果, 其中an、an+1是冪級數的相鄰兩項的系數, 則這冪級數的收斂半徑 . 定理2 如果冪級數系數滿足, 則這冪級數的收斂半徑 . 定理2 如果, 則冪級數的收斂

30、半徑R為: 當r¹0時, 當r=0時R=+¥, 當r=+¥時R=0. 簡要證明: . (1)如果0<r<+¥, 則只當r|x|<1時冪級數收斂, 故. (2)如果r=0, 則冪級數總是收斂的, 故R=+¥. (3)如果r=+¥, 則只當x=0時冪級數收斂, 故R=0. 例1 求冪級數 的收斂半徑與收斂域. 例1 求冪級數的收斂半徑與收斂域. 解 因為, 所以收斂半徑為. 當x=1時, 冪級數成為, 是收斂的; 當x=-1時, 冪級數成為, 是發散的. 因此, 收斂域為(-1, 1. 例2 求冪級數的收斂域. 例2 求

31、冪級數的收斂域. 解 因為, 所以收斂半徑為R=+¥, 從而收斂域為(-¥, +¥). 例3 求冪級數的收斂半徑. 解 因為 , 所以收斂半徑為R=0, 即級數僅在x=0處收斂. 例4 求冪級數的收斂半徑. 解 級數缺少奇次冪的項, 定理2不能應用. 可根據比值審斂法來求收斂半徑: 冪級數的一般項記為. 因為 , 當4|x|2<1即時級數收斂; 當4|x|2>1即時級數發散, 所以收斂半徑為.提示: . 例5 求冪級數的收斂域. 解 令t=x-1, 上述級數變為. 因為 , 所以收斂半徑R=2. 當t=2時, 級數成為, 此級數發散; 當t=-2時,

32、級數成為, 此級數收斂. 因此級數的收斂域為-2£t<2. 因為-2£x-1<2, 即-1£x<3, 所以原級數的收斂域為-1, 3). 三、冪級數的運算 設冪級數及分別在區間(-R, R)及(-R¢, R¢)內收斂, 則在(-R, R)與(-R¢, R¢)中較小的區間內有加法: , 減法: , 設冪級數anxn及bnxn分別在區間(-R, R)及(-R¢, R¢)內收斂, 則在(-R, R)與(-R¢, R¢)中較小的區間內有加法: anxn+bnxn =(an+b

33、n)xn , 減法: anxn-bnxn =(an-bn)xn . 乘法: =a0b0+(a0b1+a1b0)x+(a0b2+a1b1+a2b0)x2+ × × × +(a0bn+a1bn-1+ × × × +anb0)xn+ × × × 性質1 冪級數的和函數s(x)在其收斂域I上連續. 如果冪級數在x=R (或x=-R)也收斂, 則和函數s(x)在(-R, R(或-R, R)連續. 性質2 冪級數的和函數s(x)在其收斂域I上可積, 并且有逐項積分公式 (xÎI ), 逐項積分后所得到的冪級

34、數和原級數有相同的收斂半徑. 性質3 冪級數的和函數s(x)在其收斂區間(-R, R)內可導, 并且有逐項求導公式 (|x|<R), 逐項求導后所得到的冪級數和原級數有相同的收斂半徑. 性質1 冪級數anxn的和函數s(x)在其收斂域I上連續. 性質2 冪級數anxn的和函數s(x)在其收斂域I上可積, 并且有逐項積分公式 (xÎI ), 逐項積分后所得到的冪級數和原級數有相同的收斂半徑. 性質3 冪級數anxn的和函數s(x)在其收斂區間(-R, R)內可導, 并且有逐項求導公式 (|x|<R), 逐項求導后所得到的冪級數和原級數有相同的收斂半徑. 例6 求冪級數的和函

35、數. 解 求得冪級數的收斂域為-1, 1). 設和函數為s(x), 即, xÎ-1, 1). 顯然s(0)=1. 在的兩邊求導得 . 對上式從0到x積分, 得 . 于是, 當x ¹0時, 有. 從而. 因為 , 所以, 當x¹0時, 有, 從而 . 例6 求冪級數的和函數. 解 求得冪級數的收斂域為-1, 1). 設冪級數的和函數為s(x), 即, xÎ-1, 1). 顯然S(0)=1. 因為 , 所以, 當時, 有. 從而 . 由和函數在收斂域上的連續性, . 綜合起來得.提示: 應用公式, 即. . 例7 求級數的和. 解 考慮冪級數, 此級數在-1

36、, 1)上收斂, 設其和函數為s(x), 則. 在例6中已得到xs(x)=ln(1-x), 于是-s(-1)=ln2, , 即. §11. 4 函數展開成冪級數 一、泰勒級數 要解決的問題: 給定函數f(x), 要考慮它是否能在某個區間內“展開成冪級數”, 就是說, 是否能找到這樣一個冪級數, 它在某區間內收斂, 且其和恰好就是給定的函數f(x). 如果能找到這樣的冪級數, 我們就說, 函數f(x)在該區間內能展開成冪級數, 或簡單地說函數f(x)能展開成冪級數, 而該級數在收斂區間內就表達了函數f(x). 泰勒多項式: 如果f(x)在點x0的某鄰域內具有各階導數, 則在該鄰域內f(

37、x)近似等于 , 其中(x介于x與x0之間). 泰勒級數: 如果f(x)在點x0的某鄰域內具有各階導數f¢(x), f¢¢(x), × × × , f (n)(x), × × × , 則當n®¥時, f(x)在點x0的泰勒多項式 成為冪級數 這一冪級數稱為函數f(x)的泰勒級數. 顯然, 當x=x0時, f(x)的泰勒級數收斂于f(x0). 需回答的問題: 除了x=x0外, f(x)的泰勒級數是否收斂? 如果收斂, 它是否一定收斂于f(x)? 定理 設函數f(x)在點x0的某一鄰域U(

38、x0)內具有各階導數, 則f(x)在該鄰域內能展開成泰勒級數的充分必要條件是f(x)的泰勒公式中的余項Rn(x)當n®0時的極限為零, 即 . 證明 先證必要性. 設f(x)在U(x0)內能展開為泰勒級數, 即 , 又設sn+1(x)是f(x)的泰勒級數的前n+1項的和, 則在U(x0)內sn+1(x)® f(x)(n®¥). 而f(x)的n階泰勒公式可寫成f(x)=sn+1(x)+Rn(x), 于是R n(x)=f(x)-sn+1(x)®0(n®¥). 再證充分性. 設Rn(x)®0(n®¥)

39、對一切xÎU(x0)成立. 因為f(x)的n階泰勒公式可寫成f(x)=sn+1(x)+R n(x), 于是sn+1(x)=f(x)-R n(x)®f(x), 即f(x)的泰勒級數在U(x0)內收斂, 并且收斂于f(x). 麥克勞林級數: 在泰勒級數中取x0=0, 得 , 此級數稱為f(x)的麥克勞林級數. 展開式的唯一性: 如果f(x)能展開成x的冪級數, 那么這種展式是唯一的, 它一定與f(x)的麥克勞林級數一致. 這是因為, 如果f(x)在點x0=0的某鄰域(-R, R)內能展開成x的冪級數, 即 f(x)=a0+a1x+a2x2+ × × 

40、5; +anxn + × × × , 那么根據冪級數在收斂區間內可以逐項求導, 有f ¢(x)=a1+2a2x+3a3x2+ × × ×+nanxn-1+ × × × , f ¢¢(x)=2!a2+3×2a3x+ × × × + n×(n-1)anxn-2 + × × × , f ¢¢¢(x)=3!a3+ × × ×+n×(n-

41、1)(n-2)anxn-3 + × × × , × × × × × × × × × × × × × × ×f (n)(x)=n!an+(n+1)n(n-1) × × × 2an+1x + × × × , 于是得 a0=f(0), a1=f ¢(0), , × × ×, , × × ×. 應

42、注意的問題: 如果f(x)能展開成x的冪級數, 那么這個冪級數就是f(x)的麥克勞林級數. 但是, 反過來如果f(x)的麥克勞林級數在點x0=0的某鄰域內收斂, 它卻不一定收斂于f(x). 因此, 如果f(x)在點x0=0處具有各階導數, 則f(x)的麥克勞林級數雖然能作出來, 但這個級數是否在某個區間內收斂, 以及是否收斂于f(x)卻需要進一步考察. 二、函數展開成冪級數 展開步驟: 第一步 求出f (x)的各階導數: f ¢(x), f ¢¢(x), × × × , f (n)(x), × × × .

43、 第二步 求函數及其各階導數在x=0 處的值: f(0), f ¢(0), f ¢¢(0), × × × , f (n)( 0), × × × . 第三步 寫出冪級數 , 并求出收斂半徑R. 第四步 考察在區間(-R, R)內時是否Rn(x)®0(n®¥). 是否為零. 如果Rn(x)®0(n®¥), 則f(x)在(-R, R)內有展開式 (-R<x<R). 例1 將函數f(x)=ex展開成x的冪級數. 解 所給函數的各階導數為f (

44、n)(x)=ex(n=1, 2, × × ×), 因此f (n)(0)=1(n=1, 2, × × ×). 于是得級數 , 它的收斂半徑R=+¥. 對于任何有限的數x、x (x介于0與x之間), 有 , 而, 所以, 從而有展開式 . 例2 將函數f(x)=sin x 展開成x的冪級數. 解 因為(n=1, 2, × × ×), 所以f (n)(0)順序循環地取0, 1, 0, -1, × × × (n=0, 1, 2, 3, × × ×

45、;), 于是得級數 , 它的收斂半徑為R=+¥. 對于任何有限的數x、x (x介于0與x之間), 有 ®0 (n ®¥). 因此得展開式 . . 例3 將函數f(x)=(1+ x)m展開成x的冪級數, 其中m為任意常數. 解: f(x)的各階導數為 f ¢(x)=m(1+x)m-1, f ¢¢(x)=m(m-1)(1+x)m-2, × × × × × × × × ×, f (n)(x)=m(m-1)(m-2)× ×

46、×(m-n+1)(1+x)m-n, × × × × × × × × ×, 所以 f(0)=1, f ¢(0)=m, f ¢¢(0)=m(m-1), × × ×, f (n)(0)=m(m-1)(m-2)× × ×(m-n+1), × × ×于是得冪級數 . 可以證明 . 間接展開法: 例4 將函數f(x)=cos x展開成x的冪級數. 解 已知 (-¥<x<

47、;+¥). 對上式兩邊求導得 . 例5 將函數展開成x的冪級數. 解 因為, 把x換成-x2, 得 (-1<x<1).注: 收斂半徑的確定: 由-1<-x2<1得-1<x<1. 例6 將函數f(x)=ln(1+x) 展開成x的冪級數. 解 因為, 而是收斂的等比級數(-1<x<1)的和函數: . 所以將上式從0到x逐項積分, 得 . 解: f(x)=ln(1+x) (-1<x£1). 上述展開式對x=1也成立, 這是因為上式右端的冪級數當x=1時收斂, 而ln(1+x)在x=1處有定義且連續. 例7 將函數f(x)=si

48、n x展開成的冪級數. 解 因為 , 并且有 , , 所以 . 例8 將函數展開成(x-1)的冪級數. 解 因為 . 提示: ,. , , 收斂域的確定: 由和得. 展開式小結: , , , , .§11. 5 函數的冪級數展開式的應用 一、近似計算 例1 計算的近似值, 要求誤差不超過0.0001. 例1 計算的近似值(誤差不超過10-4). 解 因為, 所以在二項展開式中取, , 即得 . 這個級數收斂很快. 取前兩項的和作為的近似值, 其誤差(也叫做截斷誤差)為 . 于是取近似式為, 為了使“四舍五入”引起的誤差(叫做舍入誤差)與截斷誤差之和不超過10-4, 計算時應取五位小數

49、, 然后四舍五入. 因此最后得 . 例2 計算ln 2的近似值, 要求誤差不超過0.0001. 例2 計算ln 2的近似值(誤差不超過10-4). 解 在上節例5中, 令 x=1可得 . 如果取這級數前n項和作為ln2的近似值, 其誤差為 .為了保證誤差不超過, 就需要取級數的前10000項進行計算. 這樣做計算量太大了, 我們必需用收斂較快的級數來代替它.把展開式 中的x換成-x , 得 ,兩式相減, 得到不含有偶次冪的展開式: .令, 解出. 以代入最后一個展開式, 得 .如果取前四項作為ln2的近似值, 則誤差為 .于是取 .同樣地, 考慮到舍入誤差, 計算時應取五位小數: , , ,

50、.因此得 ln 2»0.6931. 例3 利用 求sin9°的近似值, 并估計誤差. 解 首先把角度化成弧度, (弧度)(弧度),從而 .其次, 估計這個近似值的精確度. 在sin x 的冪級數展開式中令, 得 .等式右端是一個收斂的交錯級數, 且各項的絕對值單調減少. 取它的前兩項之和作為的近似值, 起誤差為 .因此取 , 于是得 sin9°»0.15643.這時誤差不超過10-5. 例4 計算定積分 的近似值, 要求誤差不超過0.0001(?。? 例4 求積分的近似值(誤差不超過10-4). 解 將ex的冪級數展開式中的x換成-x2, 得到被積函數的

51、冪級數展開式 .于是, 根據冪級數在收斂區間內逐項可積, 得 .前四項的和作為近似值, 其誤差為 ,所以 . 例5 計算積分 的近似值, 要求誤差不超過0.0001. 例5 計算的近似值(誤差不超過10-4). 解 由于, 因此所給積分不是反常積分. 如果定義被積函數在x=0處的值為1, 則它在積分區間0, 1上連續. 展開被積函數, 有 . 在區間0, 1上逐項積分, 得 . 因為第四項 , 所以取前三項的和作為積分的近似值: . 二、歐拉公式 復數項級數: 設有復數項級數 (u1+iv1)+(u2+iv2)+ × × ×+(un+ivn)+ × &#

52、215; ×其中un , vn (n=1, 2, 3, × × ×)為實常數或實函數. 如果實部所成的級數 u1+u2 + × × × +un+ × × ×收斂于和u, 并且虛部所成的級數. v1+v2+ × × × +vn+ × × ×收斂于和v, 就說復數項級數收斂且和為u+iv. 絕對收斂: 如果級的各項的模所構成的級數收斂, 則稱級數絕對收斂. 復變量指數函數: 考察復數項級數 . 可以證明此級數在復平面上是絕對收斂的, 在x軸

53、上它表示指數函數ex , 在復平面上我們用它來定義復變量指數函數, 記為ez . 即 . 歐拉公式: 當x=0時, z=iy , 于是 =cos y+isin y. 把y定成x得 eix=cos x+i sin x, 這就是歐拉公式. 復數的指數形式: 復數z可以表示為 z=r(cosq +isinq)=reiq , 其中r=|z|是z的模, q =arg z是z的輻角. 三角函數與復變量指數函數之間的聯系: 因為eix=cos x+i sin x, e-ix=cos x-i sin x, 所以 eix+e-ix=2cos x, ex-e-ix=2isin x. , . 這兩個式子也叫做歐拉公

54、式. 復變量指數函數的性質: .特殊地, 有ex+iy =ex ei y =ex (cos y+ isin y). §11.7 傅里葉級數 一、三角級數 三角函數系的正交性 三角級數: 級數 稱為三角級數, 其中a0, an, bn (n = 1, 2, × × ×)都是常數. 三角函數系: 1, cos x, sin x, cos 2x, sin 2x, × × ×, cos nx, sin nx, × × × 三角函數系的正交性: 三角函數系中任何兩個不同的函數的乘積在區間-p, p上的積分等于零, 即 (n=1, 2, × × ×), (n=1, 2, × × &

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論