




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、單元培優(yōu)卷:勾股定理 含答案班級:姓名:第I卷(選擇題)選擇題卜列條件中,使 ABC不是直角三角形的是(A. AB= 3, BO4, AO 5B. A官-BC= AC2D. AB BC AC= 1: 2: 3C. / A / B: / C= 1:2: 33.卜面是證明勾股定理的四個圖形,其中是已知 AB= 15, AD= 12, AC= 13, CD= 5,則 BC的長為()D. 94.C. 12如圖,一個梯子 AB斜靠在一豎直的墻 AO上,測得A0= 8米.若梯子的頂端沿墻面向下滑動2米,這時梯子的底端在水平的地面也恰好向外移動2米,則梯子 AB的長度為(A. 10 米B. 6 米C. 7
2、米D. 8米B,鈍角三角形D.直角三角形5 .若一個三角形三邊 a, b, c滿足(a+b) 2= c2+2ab,則這個三角形是()A.等邊三角形C.等腰直角三角形6 .如圖,一豎直的木桿在離地面4米處折斷,木!端落在地面離木桿底端3米處,木桿折斷之前的高度為(B. 8米C. 9米D. 12 米7 .如圖,021,過點(diǎn)P作PPOP且PP=1,得OP=泥;再過點(diǎn)Pi作PiBOP且PiP2=1,得OP/§又過點(diǎn)P2作BEOP且P2P3=1,得OP= 2依此法繼續(xù)作下去,得OPoi7=()A.- r8.如圖,小明將一張長為20cm寬為15cm的長方形紙(AE> DE剪去了一角,量得
3、AB= 3cm CD= 4cm則剪去的直角三角形的斜邊長為(12cmC.16cmD. 20cm9.如圖,以數(shù)軸的單位長度線段為邊作一個正方形,以1為圓心,正方形對角線長為半徑畫弧,交數(shù)軸于點(diǎn)A,則點(diǎn)A表小的數(shù)是(),月01D.二A 1B. - 1C. 1 V2D.610 .如圖,RtABCN/C= 90°,AO 3,BC= 4.分別以ABACBC為邊在AB的同側(cè)作正方形 ABEF ACPQBCMN四塊陰影部分的面積分別為S、S2、S、S4.則S-S2+S3+S4等于()A. 4B. 6C. 8D. 12第R卷(非選擇題)二.填空題11 .若點(diǎn)P (a, - 3)在第四象限,且到原點(diǎn)的
4、距離是5,則a=12 .如圖四邊形 ABCD / A= Z C= 90° , / ABC= 60° , AD= 2, CD= 5,則 BD的長為13.如圖所示的網(wǎng)格是正方形網(wǎng)格,則/ACEB- / DCE=(點(diǎn)A B C D E是網(wǎng)格線交點(diǎn))12,則AE等于O14.圖中陰影部分是一個正方形,則此正方形的面積為,/ A和/B的平分線交于點(diǎn) P,過點(diǎn)P作PEL AB交AB于點(diǎn)E.BC= 5, AC=5三.解答題且 CD= 4, BD16 .如圖,在 RtABC中,/ BCA= 90 , AC= 12, AB= 13,點(diǎn) D是 RtABC7卜一點(diǎn),連接 DC DB(1)求BC的長
5、;(2)你能求出/ D的度數(shù)嗎?請試一試.17 .在ABC3,已知三角形的三邊長,求這個三角形的面積.(1)如圖1,已知AO 5, BO 12, AB= 13,則 ABC勺面積是(2)如圖 2,已知 BO 10, AB= ACC= 13,求 ABC勺面積;(3)如圖 3,已知 AO 8, BO 10, AB= 12,求 ABC勺面積.CS318.在歡慶中華人民共和國成立七十周年之際,學(xué)校在一塊長80米,寬24米的長方形綠地四周插上彩旗,長方形的四個角各插一面彩旗,并且要求相鄰兩面彩旗間的距離相等.(1)在各個方案中,相鄰兩面彩旗之間最大距離是多少米?(2)在所有方案中,至少要在綠地四周插多少面
6、彩旗?19 .如圖,在 ABC43, AB= AC= 5cmi BC= 6cm BDL AC交AC于點(diǎn)D.動點(diǎn)P從點(diǎn)C出發(fā),按 C-2 BC的路徑運(yùn)動,且速度為2cm/s,設(shè)出發(fā)時間為t .(1)求BD的長;(2)當(dāng) t = 3.2 時,求證:CPLAR(3)當(dāng)點(diǎn)P在BC邊上運(yùn)動時,若 CDP以CP為腰的等腰三角形,求出所有滿足條件的t的值;(4)在整個運(yùn)動過程中,若 Saab> nSbdp (n為正整數(shù)),則滿足條件的 t的值有 個.20 .閱讀理解:【問題情境】教材中小明用4張全等的直角三角形紙片拼成圖1,利用此圖,可以驗(yàn)證勾股定理嗎?【探索新知】從面積的角度思考,不難發(fā)現(xiàn):大正方形
7、的面積=小正方形的面積+4個直角三角形的面積從而得數(shù)學(xué)等式: ;(用含字母a、b、c的式子表示)化簡證得勾股定理:a2+b2= c2【初步運(yùn)用】(1)如圖1,若b=2a,則小正方形面積:大正方形面積=;(2)現(xiàn)將圖1中上方的兩直角三角形向內(nèi)折疊,如圖 2,若a=4, b=6此時空白部分的面積為 ;【遷移運(yùn)用】如果用三張含60。的全等三角形紙片,能否拼成一個特殊圖形呢?帶著這個疑問,小麗拼出圖3的等邊三角形,你能否仿照勾股定理的驗(yàn)證,發(fā)現(xiàn)含60。的三角形三邊a、b、c之間的關(guān)系,寫出此等量關(guān)系式及其推導(dǎo)過程.知識補(bǔ)充:如圖4,含60°的直角三角形,對邊 v:斜邊x=定值k.參考答案一.
8、選擇題1. D.2. A.3. C.4. A.5. D.6. C.7. D.8. D.9. C.10. B.二.填空題11. 4.12. 2V13.13. 45 .14. 36 .15. 10.三.解答題16. 解:(1) RtAABC, / BCA= 90 , AC= 12, AB= 13,BC= VaB2-AC2=j7132-12£= 5;(2)能求出/ D的度數(shù):理由:.在 BC加,CD= 4, BD= 3, BO 5,. cD+bD= bC,, BCD直角三角形, ./ D= 90° .17. 解:(1) . AO 5, B012, AB= 13,. aC+bC=a
9、,.ABB直角三角形,/ C= 90° , 11.ABC勺面積= yAO BC=x 5X 12 = 30;故答案為:30;(2)作ADL BCT D,如圖2所示:AB= ACBD= CD= yBO 5,AD= Vab2-bd2= 1丘落落 12,.ABC勺面積= yBO AD=x 10X 12=60;(3)作CDL AB于D,如圖3所示:由勾股定理得: CD=AC AD=BC BD,即 82 AD2= 102 (12 AD 2,解得:AD=1",8業(yè)"產(chǎn)乎,圜3.ABC勺面積= yABx CD=x 12X18 .解:(1) 80=24X 5, 24=23X 3,所
10、以80與24的最大公因數(shù)是8,即相鄰兩面彩旗之間最大距離是8米;(2)要使彩旗數(shù)量最少,相鄰兩面彩旗之間距離最大,80+8=10 面,24+8=3 面,(10+3) X 2= 26 面,答:至少要在地四周插 26面彩旗.19 . (1)解:如圖1中,作AHL BC于H.BH= CH= -yBO 3,AH= AB2-BH2=52-3a= 4 , SA abp ?bc?ah= ?agbq.2- -(2)證明:如圖2中,S2當(dāng) t =3.2 時,3.2 X 2=6.4 ,此時點(diǎn) P 在 AB邊上,A鼻 6.45=1.4,由(1)可知 AD= .R : , ,:52-與產(chǎn)=1.4 , bAP= AQA
11、O AR / A= /A, .APC2 ADB(SAS , ./ APC= / ADB= 90° , PCL AB(3)解:當(dāng)點(diǎn) P在BC上時,CP= 16- 2t ,如圖3- 1中,當(dāng)CD= CP時,3-1,. CD= 5- 1,4 =3.6 ,16-2t = 3.6,t = 6.2 .如圖32中,當(dāng)PD= PC時,.C= / PDC/C+/ CBD= 90° , / PDC/PDB= 90 ,.Z PBD= / PDBPB= PDPC= PB= 3,.-16-2t = 3,t = 6.5 ,綜上所述,滿足條件的t的值為6.2或6.5 .(4)解:- SaabC=亍X 4X 6= 12, 0< Sabd產(chǎn)21625,滿足Saab尸nSABDP (n為正整數(shù)),的整數(shù) n的值有無數(shù)個,.滿足條件的t的值有無數(shù)個,故答案為有無數(shù)個.20.解:探索新知由題意:大正方形的面積=(a+b) 2= c2+4xab,a2+2ab+b2= c2+2ab,a2+b2= c2【初步運(yùn)用】(1)由題意:b=2a, c= aa,,小正方形面積:大正方形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)??破帐夜芾碇贫?/a>
- 學(xué)生桌椅凳管理制度
- 學(xué)院體育隊(duì)管理制度
- 安全最基本管理制度
- 安全風(fēng)險點(diǎn)管理制度
- 完善新業(yè)態(tài)管理制度
- 寶雞小飯桌管理制度
- 實(shí)驗(yàn)服領(lǐng)用管理制度
- 客戶公海池管理制度
- 宣傳部預(yù)算管理制度
- “雙招雙引”工作實(shí)施方案新
- 學(xué)習(xí)型組織建設(shè)實(shí)施方案
- 質(zhì)量三檢管理制度
- 2025深圳輔警考試題庫
- 孕前優(yōu)生健康教育
- 小紅書營銷師(初級)認(rèn)證理論知識考試題及答案
- 新工科背景下大學(xué)化學(xué)課程的改革與創(chuàng)新實(shí)踐
- 《信號處理技術(shù)》課件
- 熱電廠汽輪機(jī)安全培訓(xùn)
- 2025行政執(zhí)法人員政治理論和法律知識考試試題及參考答案
- uni-app移動應(yīng)用開發(fā)課件 7-智慧環(huán)保項(xiàng)目
評論
0/150
提交評論