




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 華東師大版華東師大版26.226.2 九年級(下九年級(下 冊)冊)的圖象與性質的圖象與性質h)h)- -a(xa(xy y2 2yax2+ka0a0k0k0(0,k)用平移觀點看函數:用平移觀點看函數:xyo2axy 拋物線拋物線 可以看作是由可以看作是由拋物線拋物線 平移得到。平移得到。kaxy2kaxy2)0( k)0( kkaxy22axy (1)當當k0時,向上平移時,向上平移 個單位;個單位;k(2)當當k0時,向右平移時,向右平移 個單位;個單位;h(2)當當h0時,向左平移時,向左平移 個單位。個單位。h 想一想:想一想:鞏固鞏固1、二次函數、二次函數 是由二次函是由二次函數
2、數 向向 平平2移移 個單位得到的。個單位得到的。2)2( xy2xy2、二次函數、二次函數 是由二次函是由二次函數數 向左平移向左平移3個單位得到的。個單位得到的。2)3(2xy2右右y=2x2 試一試:試一試:探究探究三、觀察三條拋物線:三、觀察三條拋物線:(1)開口方向是什么?開口方向是什么?-3 -2 -1 0 1 2 321-1-2-3-4-5-6-7-8xy221xy2) 1(21xy2) 1(21xy 議一議:議一議:探究探究三、觀察三條拋物線:三、觀察三條拋物線:(2)開口大小有沒有開口大小有沒有變化?變化?-3 -2 -1 0 1 2 321-1-2-3-4-5-6-7-8x
3、y221xy2) 1(21xy2) 1(21xy 議一議:議一議:探究探究三、觀察三條拋物線:三、觀察三條拋物線:(3)對稱軸是什么?對稱軸是什么?-3 -2 -1 0 1 2 321-1-2-3-4-5-6-7-8xy221xy2) 1(21xy2) 1(21xy的對稱軸:直線的對稱軸:直線x=12) 1(21xy2) 1(21xy拋物線拋物線的的對對稱稱軸軸拋物線拋物線的對稱軸:直線的對稱軸:直線x=-1 議一議:議一議:探究探究三、觀察三條拋物線:三、觀察三條拋物線:(4)頂點各是什么?頂點各是什么?-3 -2 -1 0 1 2 321-1-2-3-4-5-6-7-8xy221xy2)
4、1(21xy2) 1(21xy拋物線拋物線2) 1(21xy的頂點:(的頂點:(1,0)拋物線拋物線2) 1(21xy的頂點:(的頂點:(-1,0) 議一議:議一議:探究探究三、觀察三條拋物線:三、觀察三條拋物線:(6)增減性怎么樣?增減性怎么樣?-3 -2 -1 0 1 2 321-1-2-3-4-5-6-7-8xy221xy2) 1(21xy2) 1(21xy(5)最值怎么樣?)最值怎么樣?2)1(21xy拋物線拋物線有最大值:有最大值:x=1時,時,y最大值最大值=0拋物線拋物線2) 1(21xy有最大值:有最大值:x=-1時,時,y最大值最大值=0 議一議:議一議:頂點頂點(0,0)(
5、0,0)頂點頂點(2,0)(2,0)直線直線x=x=2 2直線直線x=2x=2向向右右平移平移2 2個單位個單位向向左左平移平移2 2個單位個單位2)2(21xy2)2(21xy頂點頂點( (2,0)2,0)對稱軸對稱軸:y:y軸軸即直線即直線: x=0: x=0在同一坐標系中作出下列二次函數在同一坐標系中作出下列二次函數: :2)2(21xy2)2(21xy觀察三條拋物線的觀察三條拋物線的相互關系相互關系, ,并分別指并分別指出它們的開口方向出它們的開口方向, ,對稱軸,頂點及最對稱軸,頂點及最值值. .向向右右平移平移2 2個單位個單位向向右右平移平移2 2個單位個單位向向左左平移平移2
6、2個單位個單位向向左左平移平移2 2個單位個單位歸納與小結歸納與小結二次函數二次函數y = ax-h2的性質的性質:(1)開口方向:)開口方向:當當a0時,開口向上時,開口向上;當當a0時,開口向下;時,開口向下;(2)對稱軸:)對稱軸:對稱軸直線對稱軸直線x=h;(3)頂點坐標:)頂點坐標: 頂點坐標是頂點坐標是(h,0)(4)函數的增減性:)函數的增減性:當當a0時,時,對稱軸左側對稱軸左側y隨隨x增大而減小,增大而減小,對稱軸右側對稱軸右側y隨隨x增大而增大;增大而增大;x=h時,時,y最小值最小值=0當當a0時,時,對稱軸左側對稱軸左側y隨隨x增大而增大,增大而增大,對稱軸右側對稱軸右
7、側y隨隨x增大而減小。增大而減小。 x=h時,時,y最大值最大值=0 說出下列二次說出下列二次 函數的開口方向、函數的開口方向、對稱軸、頂點坐標及增減性對稱軸、頂點坐標及增減性 (1) y=2(x+3)2 (2) y=-3(x -1)2 (3) y=5(x+2)2 (4) y= -(x-6)2 (5) y=7(x-8)2向上向上, x= - 3, ( - 3, 0)向下向下, x= 1, ( 1, 0)向上向上, x= - 2, ( - 2, 0)向下向下, x= 6, ( 6, 0)向上向上, x= 8, ( 8, 0) 試一試:試一試:1.函數函數y=-2(x+3)2的圖象的對稱軸是的圖象
8、的對稱軸是 ,頂點坐標是頂點坐標是 ,當,當x= 時,時,y有最有最 值值為為 。2.把二次函數把二次函數y=-3x2往左平移往左平移2個單位,再與個單位,再與x軸軸對稱后,所形成的二次函數的解析式為對稱后,所形成的二次函數的解析式為 。3、已知拋物線、已知拋物線y=a(x+h)2的頂點是(的頂點是(-3,0)它是)它是由拋物線由拋物線y=-4x2平移得到的,則平移得到的,則a= ,h= 。 4、把拋物線、把拋物線y=(x+1)2向向 平移平移 個個 單位單位后,得到拋物線后,得到拋物線y=(x-3)25、把拋物線、把拋物線y=x2+mx+n向左平移向左平移4個單位,得到拋個單位,得到拋物線物
9、線y=(x-1)2,則則m= ,n= .直線直線x=-3(-3,0)-3大大0y=3(x+2)2y=3(x+2)2-43右右4-10256.寫出一個開口向上,對稱軸為寫出一個開口向上,對稱軸為 x=-2,頂點在,頂點在x軸上,并且與軸上,并且與y軸交于點軸交于點(0,8)的拋物線解析式為)的拋物線解析式為 . 7.拋物線拋物線y=3(x-8)2,x=-y最小值最小值 . 8.拋物線拋物線y= -3(x+2)2與與x軸軸y軸的交點軸的交點坐標分別為坐標分別為 .9.已知二次函數已知二次函數y=8(x -2)2 當當 時時,y隨隨x的增大而增大的增大而增大, 當當 時,時,y隨隨x的增大而減小的增
10、大而減小.y=2(x+2)2080(0,-2),(0,-12)x2x2范例范例例例1、已知拋物線、已知拋物線 經過點經過點(1,3),求:,求:(1)拋物線的關系式;拋物線的關系式;(2)拋物線的對稱軸、頂點坐標;拋物線的對稱軸、頂點坐標;(3)x=3時的函數值;時的函數值;(4)當當x取何值時,取何值時,y隨隨x的增大而增大。的增大而增大。2)2( xay 試一試:試一試:拓展提高拓展提高1、將拋物線、將拋物線 向左平移后,所得向左平移后,所得新拋物線的頂點橫坐標為新拋物線的頂點橫坐標為-2,且新拋物,且新拋物線經過點線經過點(1,3),求,求a的值。的值。2axy 2、將拋物線、將拋物線 左右平移,使得左右平移,使得它與它與x軸相交于點軸相交于點A,與,與y軸相交于點軸相交于點B。若若ABO的面積為的面積為8,求平移后的拋物,求平移后的拋物線的解析式。線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 初二班主任學風建設促進計劃
- 藥品不良反應信息反饋流程
- 藝術組校本文化傳承計劃
- 部編版小學語文一年級上冊家長配合計劃
- 旅游地理教育信息化建設計劃
- 小學四年級班主任德育工作總結范文
- 兒童福利院保育員工作職責他
- 書店顧客接待標準服務流程
- 深化教育教學改革推動產教融合心得體會
- 2025年工會文化建設計劃
- 幼兒園中班下家長會課件
- 2025輔警招聘考試題目及答案
- 2025年度上半年校園安全工作總結及下半年工作計劃
- 美國博物館向中方歸還楚帛書
- 浙江2025年6月高一學考模擬地理試題及答案
- 紡織公司財務管理制度
- 2024年黑龍江省公安廳招聘警務輔助人員考試真題
- 景區吊橋設施管理制度
- 2025年高考數學全國新課標Ⅱ卷試卷評析及備考策略(課件)
- 《2025版防范電信網絡詐騙宣傳手冊》專題講座
- 黑龍江司法警官職業學院2025年招生政治考察表
評論
0/150
提交評論