(完整版)人教版小學數學知識點總結(完整版),推薦文檔_第1頁
(完整版)人教版小學數學知識點總結(完整版),推薦文檔_第2頁
(完整版)人教版小學數學知識點總結(完整版),推薦文檔_第3頁
(完整版)人教版小學數學知識點總結(完整版),推薦文檔_第4頁
(完整版)人教版小學數學知識點總結(完整版),推薦文檔_第5頁
已閱讀5頁,還剩21頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、人教版小學數學知識點歸納第一章數和數的運算一概念(一)整數1 、整數的意義自然數和0 都是整數。2、自然數我們在數物體的時候,用來表示物體個數的1, 2, 3叫做自然數。一個物體也沒有,用 0 表示。 0 也是自然數。3、計數單位一(個)、十、百、千、萬、十萬、百萬、千萬、億都是計數單位。每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。4、數位計數單位按照一定的順序排列起來,它們所占的位置叫做數位。5、數的整除整數a除以整數b(b?0 ,除得的商是整數而沒有余數,我們就說a能被b整除,或者說b能整除a。例如15+ 3=5所以15能被3整除,3能整除15。如果數a能被數b (

2、b?Q整除,a就叫做b的倍數,b就叫做a的因數。倍 數和約數是相互依存的。一個數的因數的個數是無限的,其中最小的因數是1,最大的因數是它本身。一個數的倍數的個數是無限的,其中最小的倍數是它本身,沒有最大的倍 數。個位上是 0 、 2、 4、 6、 8 的數,都能被2 整除,例如:202、 480、 304,都能被 2 整除。個位上是 0 或 5 的數,都能被5 整除,例如: 5、 30、 405 都能被 5 整除。一個數的各位上的數的和能被3 整除,這個數就能被3 整除,例如: 12、108、 204 都能被 3 整除。能被 2 整除的數叫做偶數,不能被2 整除的數叫做奇數。 0 也是偶數。自

3、然數按能否被2 整除的特征可分為奇數和偶數。一個數,如果只有1 和它本身兩個因數,這樣的數叫做質數, 100 以內的質數有:2、 3、 5、 7、 11 、 13、 17、 19、 23、 29、 31、 37、 41、 43、 47、 53、59、 61、 67、 71、 73、 79、 83、 89、 97。一個數,如果除了 1 和它本身還有別的因數,這樣的數叫做合數,例如 4、 6、 8、 9 、 12 都是合數。1 不是質數也不是合數,自然數除了 1 外,不是質數就是合數。如果把自然數按其因數的個數的例外分類,可分為質數、合數和 1 。每個合數都可以寫成幾個質數相乘的形式。其中每個質數

4、都是這個合數的因數,叫做這個合數的質因數,例如 15=3X5 3和5叫做15的質因數。把一個合數用質因數相乘的形式表示出來,叫做分解質因數。例如把28 分解質因數28=2X2X7幾個數公有的因數,叫做這幾個數的公因數。其中最大的一個,叫做這幾個數的最大公因數,例如 12的約數有 1、 2、 3、 4、 6、 12; 18 的約數有 1、2、 3、 6、 9、 18。其中,1、 2、 3、 6是 12和 1 8的公因數, 6是它們的最大公因數。公約數只有1 的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況: 1 和任何自然數互質。相鄰的兩個自然數互質。兩個例外的質數互質。當合數不是質數的

5、倍數時,這個合數和這個質數互質。兩個合數的公約數只有 1 時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。如果較小數是較大數的因數,那么較小數就是這兩個數的最大公因數。如果兩個數是互質數,它們的最大公因數就是1 。幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6、8、10、12、3的倍數有3、6、9、12、15、18其中6、12、18是2、3的公倍數,6 是它們的最小公倍數。如果較大數是較小數的倍數,那么較大數就是這兩個數的最小公倍數。如果兩個數是互質數,那么這兩個數的積就是它們的最小公倍數。幾個數的公因數的個數是無

6、限的,而幾個數的公倍數的個數是無限的。(二)小數1 、小數的意義把整數1平衡分成10份、100份、1000份得到的十分之幾、百分之 幾、千分之幾可以用小數表示。一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位 “十分之一 ”和整數部分的最低單位 “一”之間的進率也是10。2、小數的分類循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。例如:3.5550.033312.109109一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。例如:3.99 的循環

7、節是“9,” 0.5454的循環節是“54”(三)分數1 、分數的意義把單位“ 1平衡分成若干份,表示這樣的一份或者幾份的數叫做分數。”在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位 “ 1平衡分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。”把單位“ 1平衡分成若干份,表示其中的一份的數,叫做分數單位。”2、分數的分類真分數:分子比分母小的分數叫做真分數。真分數小于 1。假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大于或等于1。帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。(四)百分數1 、表示一個數是另一個數的百分之幾的數叫做

8、百分數, 也叫做百分率或百分比。百分數通常用“ %“來表示。百分號是表示百分數的符號。二方法(一)數的讀法和寫法1 . 整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個 “億”或 “萬”字。每一級末尾的 0都不讀出來,其它數位持續有幾個0 都只讀一個零。2 .整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。 3.小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作“點 ” ,小數部分從左向右順次讀出每一位數位上的數字。4 .小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小

9、數部分順次寫出每一個數位上的數字。5 .分數的讀法:讀分數時,先讀分母再讀 “分之 ”然后讀分子,分子和分母按照整數的讀法來讀。6 .分數的寫法:先寫分數線,再寫分母,最后寫分子,按照整數的寫法來寫。7 .百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。8 .百分數的寫法:百分數通常不寫成分數形式,而在原來的分子后面加上百分號“ %”來表示。(二)數的改寫一個較大的多位數,為了讀寫便當,常常把它改寫成用 “萬”或 “億 ”作單位的數。有時還可以根據需要,省略這個數某一位后面的數,寫成相似數。1 . 確鑿數:在實際生活中,為了計數的簡捷,可以把一個較大的數改寫

10、成以萬或億為單位的數。改寫后的數是原數的確鑿數。例如把1254300000 改寫成以萬做單位的數是125430萬;改寫成以億做單位的數12.543億。2 .相似數:根據實際需要,我們還可以把一個較大的數,省略某一位后面的尾數,用一個相似數來表示。例如: 1302490015省略億后面的尾數是13億。3 .四舍五入法:要省略的尾數的最高位上的數是4 或者比 4 小,就把尾數去掉;如果尾數的最高位上的數是5 或者比 5 大,就把尾數舍去,并向它的前一位進 1。例如:省略345900萬后面的尾數約是35萬。省略 4725097420億后面的尾數約是47 億。(三)數的互化1 . 小數化成分數:原來有

11、幾位小數,就在1 的后面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。2 .分數化成小數:用分母去除分子。能除盡的就化成無限小數,有的不能除盡,不能化成無限小數的,大凡保留三位小數。3 .一個最簡分數,如果分母中除了 2 和 5 以外,不含有其他的質因數,這個分數就能化成無限小數;如果分母中含有2 和 5 以外的質因數,這個分數就不能化成無限小數。4 .小數化成百分數:只要把小數點向右移動兩位,同時在后面添上百分號。5 .百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。6 .分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小

12、數化成百分數。7 .百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。(四)數的整除1 . 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。2 .求幾個數的最大公因數的方法是:先用這幾個數的公約數持續去除,一直除到所得的商只有公因數1 為止,然后把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。3 .求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然后把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。4.成為互質關系的兩個數:1 和任何自然數互

13、質;相鄰的兩個自然數互質;當合數不是質數的倍數時,這個合數和這個質數互質;兩個合數的公約數只有1 時,這兩個合數互質。(五)約分和通分約分的方法:用分子和分母的公約數( 1 除外)去除分子、分母;通常要除到得出最簡分數為止。通分的方法:先求出原來的幾個分數分母的最小公倍數,然后把各分數化成用這個最小公倍數作分母的分數。三性質和規律(一)商不變的規律商不變的規律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。(二)小數的性質小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。(三)小數點位置的移動引起小數大小的變化1 . 小數點向右移動一位,原來的數就擴大10 倍;小數點向右移

14、動兩位,原來的數就擴大100倍;2 .小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的數就縮小100倍;3 .小數點向左移或者向右移位數不夠時,要用“ 0補足位。“(四)分數的基本性質分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。(五)分數與除法的關系1 .被除數 除數=被除數/除數2 . 因為零不能作除數,所以分數的分母不能為零。3 .被除數相當于分子,除數相當于分母。四運算的意義(一)整數四則運算1 整數加法:把兩個數合并成一個數的運算叫做加法。在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。加數+加數=和一個加數

15、=和另一個加數2 整數減法:已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。被減數是總數,減數和差分別是部分數。3 整數乘法:求幾個相同加數的和的簡捷運算叫做乘法。在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。在乘法里, 0 和任何數相乘都得0.1 和任何數相乘都的任何數。一個因數 個因數二積一個因數=積期一個因數4 整數除法:已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。在除法里, 0 不能做除數。因為

16、0 和任何數相乘都得0,所以任何一個數除以 0 ,均得不到一個確定的商。被除數 除數=商除數=被除數 福被除數=商 滁數(二)小數四則運算1 . 小數加法:小數加法的意義與整數加法的意義相同。是把兩個數合并成一個數的運算。2 .小數減法:小數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算.3 .小數乘法:小數乘整數的意義和整數乘法的意義相同,就是求幾個相同加數和的簡捷運算;一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾是多少。4 .小數除法:小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。(三)分數

17、四則運算1 . 分數加法:分數加法的意義與整數加法的意義相同。是把兩個數合并成一個數的運算。2 .分數減法:分數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算。3 .分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡捷運算。4 .乘積是 1 的兩個數叫做互為倒數。5 .分數除法:分數除法的意義與整數除法的意義相同。就是已知兩個因數的積與其中一個因數,求另一個因數的運算。(四)運算定律1 . 加法交換律:兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a。2 .加法結合律:三個數相加,先把前兩個數相加,再加上第三個數;或者先把后兩

18、個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c。)3 .乘法交換律:兩個數相乘,交換因數的位置它們的積不變,即 aXb=bXa4 .乘法結合律:三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把后兩個數相乘,再和第一個數相乘,它們的積不變,即 (a xb) xc=ax (bxc)5 .乘法分配律:兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相力口,即(a+b) xc=ax c+bXc6 .減法的性質:從一個數里持續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c> (五)運算法則1 . 回顧整數加法、減法、乘法

19、的計算法則:2 .整數除法計算法則:先從被除數的高位除起,除數是幾位數,就看被除數的前幾位;如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商 1,要補“ 0占位。”每次除得的余數要小于除數。3 .小數乘法法則:先按照整數乘法的計算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用 “ 0補足。”4 .除數是整數的小數除法計算法則:先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添“ 0,再繼續除。”5 .除數是小數的除法計算法則:先移動除數的小數點,使它變成整數,除

20、數的小數點也向右移動幾位(位數不夠的補“ 0),然后按照除數是整數的除法法則進行計算。”6 .異分母分數加減法計算方法 :先通分,然后按照同分母分數加減法的的法則進行計算。7 .帶分數加減法的計算方法 :整數部分和分數部分分別相加減,再把所得的數合并起來。10.分數乘法的計算法則:分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。12.分數除法的計算法則:甲數除以乙數( 0 除外),等于甲數乘乙數的倒數。(六)運算順序1 . 沒有括號的混合運算:同級運算從左往右依次運算;兩級運算先算乘、除法,后算加減法。2 .有括號的混合運算:先算小括號里面的,再算中括號里面的,最后算括號外面的。第二章度

21、量衡一長度單位之間的換算* 1厘米=10毫米* 1分米=10厘米* 1米=1000毫米* 1千米=1000米二面積(一)什么是面積面積,就是物體所占平面的大小。對立體物體的表面的多少的測量大凡稱表面積。(二)常用的面積單位* 平方厘米 * 平方分米 *平方米 *平方千米(三)面積單位的換算* 1平方分米=100平方厘米* 1平方米=100平方分米* 1公傾=10000平方米*1平方千米=100公頃三體積和容積(一)什么是體積、容積體積,就是物體所占空間的大小。容積,箱子、油桶、倉庫等所能容納物體的體積,通常叫做它們的容積。(二)常用單位1 體積單位*立方米 *立方分米 *立方厘米 2 容積單位

22、 *升*毫升(三)單位換算1 體積單位* 1 立方米 =1000立方分米 * 1 立方分米 =1000立方厘米2 容積單位* 1 升=1000毫升 * 1 升=1 立方米* 1 毫升 =1 立方厘米四質量* 1 噸=1000千克 * 1 千克 = 1000克五時間* 1 世紀 =100年* 1 年=365天平年* 一年 =366 天閏年* 1 天= 24小時 * 1 小時 =60分*1 分=60秒第三章代數初步知識一、用字母表示數1 用字母表示數的意義和作用* 用字母表示數,可以把數量關系扼要的表達出來,同時也可以表示運算的結果。2 用字母表示多見的數量關系、運算定律和性質、幾何形體的計算公式

23、( 1)多見的數量關系路程用s表示,速度v用表示,時間用t表示,三者之間的關系:s=vt v=s/t t=s/v 總價用 a 表示,單價用 b 表示,數量用 c 表示,三者之間的關 系 : a=bc b=a/cc=a/b( 2)運算定律和性質加法交換律: a+b=b+a加法結合律:(a+b)+c=a+(b+c)乘法交換律:ab=ba乘法結合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc減法的性質:a-(b+c)=a-b-c( 3)用字母表示幾何形體的公式長方形的長用a 表示,寬用b 表示,周長用 c 表示,面積用 s 表示。c=2(a+b) s=ab正方形的邊長a用表示,周長用

24、c表示,面積用s表示。c= 4as=a2平行四邊形的底a用表示,高用h表示,面積用s表示。s=ah三角形的底用a 表示,高用h 表示,面積用s 表示。s=ah/2梯形的上底用a 表示,下底b 用表示,高用h 表示,面積用s 表示。s=(a+b)h/2圓的半徑用r表示,直徑用d表示,周長用c表示,面積用s表示。 c=nd=2n r s=n r2扇形的半徑用 r 表示, n 表示圓心角的度數,面積用 s 表示。s= Un360長方體的長用 a 表示,寬用 b 表示,高用 h 表示,表面積用 s 表示,體積 用 v 表示。v=sh s=2(ab+ah+bh) v=abh正方體的棱長用a表示,底面周長

25、c用表示,底面積用s表示,體積用v表 示 .s= 6a 2v=a3圓柱的高用h表示,底面周長用c表示,底面積用s表示,體積用v表示.s 側=chs 表=s 側 +2s 底 v=sh圓錐的高用 h 表示,底面積用 s 表示,體積用 v 表示 .v=sh/33 用字母表示數的寫法數字和字母、字母和字母相乘時,乘號可以記作“ .,或者省略不寫,數字”要寫在字母的前面。當 “ 1與任何字母相乘時,”“ 1省略不寫。”4、將數值代入式子求值把詳盡的數代入式子求值時,要注意書寫格式:先寫出字母等于幾,然后寫出原式,再把數代入式子求值。字母表示的是數,后面不寫單位名稱。二、簡捷方程(一)方程和方程的解1 、

26、方程:含有未知數的等式叫做方程。注意方程是等式,又含有未知數,兩者缺一不可。方程和算術式例外。算術式是一個式子,它由運算符號和已知數組成,它表示未知數。方程是一個等式,在方程里的未知數可以參加運算,并且只有當未知數為特定的數值時,方程才成立。2、方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。三、解方程解方程,求方程的解的過程叫做解方程。四、列方程解應用題先找出等量關系,再根據詳盡建立等量關系的需要,把應用題中已知數(量)和所設的未知數(量)列成有關的代數式進而列出方程。五比和比例1 比的意義和性質( 1)比的意義兩個數相除又叫做兩個數的比。“: ”是比號,讀作“比”。比號前面的數叫做

27、比的前項,比號后面的數叫做比的后項。比的前項除以后項所得的商,叫做比值。同除法比較,比的前項相當于被除數,后項相當于除數,比值相當于商。比值通常用分數表示,也可以用小數表示,有時也可能是整數。比的后項不能是零。根據分數與除法的關系,可知比的前項相當于分子,后項相當于分母,比值相當于分數值。( 2)比的性質比的前項和后項同時乘上或者除以相同的數( 0 除外),比值不變,這叫做比的基本性質。( 3)求比值和化簡比求比值的方法:用比的前項除以后項,它的結果是一個數值可以是整數,也可以是小數或分數。根據比的基本性質可以把比化成最簡單的整數比。它的結果必須是一個最簡比,即前、后項是互質的數。( 4)比例

28、尺圖上距離:實際距離=比例尺要求會求比例尺;已知圖上距離和比例尺求實際距離;已知實際距離和比例尺求圖上距離。線段比例尺:在圖上附有一條注有數目的線段,用來表示和地面上相對應的實際距離。( 5)按比例分配在農業生產和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。方法:首先求出各部分占總量的幾分之幾,然后求出總數的幾分之幾是多少。2 比例的意義和性質( 1)比例的意義表示兩個比相等的式子叫做比例。組成比例的四個數,叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內項。( 2)比例的性質在比例里,兩個外項的積等于兩個兩個內向的積。這叫做比例的基本性質。( 3

29、)解比例根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例中的另外一個未知項。求比例中的未知項,叫做解比例。3 正比例和反比例( 1)成正比例的量兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。用字母表示y/x=k(一定)( 2)成反比例的量兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。用字母表示xxy=kt定)第四章幾何的初步知識一線和角( 1)線* 直線直線沒有端點;長度無限;

30、過一點可以畫無數條,過兩點只能畫一條直線。* 射線射線只有一個端點;長度無限。* 線段線段有兩個端點,它是直線的一部分;長度無限;兩點的連線中,線段為最短。* 平行線在同一平面內,不相交的兩條直線叫做平行線。兩條平行線之間的垂線長度都相等。* 垂線兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,相交的點叫做垂足。從直線外一點到這條直線所畫的垂線的長叫做這點到直線的距離。( 2)角( 1)從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。(2)角的分類銳角:小于90° 的角叫做銳角。鈍角:大于90°而小于180&

31、#176;的角叫做鈍角。1 個周角 =2 個平角 =4 個直角。二、平面圖形1 、長方形( 1)特征對邊相等, 4 個角都是直角的四邊形。有兩條對稱軸。( 2)計算公式c=2(a+b) s=ab2、正方形1)特征:四條邊都相等,四個角都是直角的四邊形。有4 條對稱軸。( 2)計算公式c= 4as=a23、三角形( 1)特征由三條線段圍成的圖形。內角和是180 度。三角形具有穩定性。三角形有三條高。( 2)計算公式s=ah/2( 3)分類按角分銳角三角形:三個角都是銳角。直角三角形:有一個角是直角。等腰三角形的兩個銳角各為 45度,它有一條對稱軸。鈍角三角形:有一個角是鈍角。按邊分不等邊三角形:

32、三條邊長度不相等。等腰三角形:有兩條邊長度相等;兩個底角相等;有一條對稱軸。等邊三角形:三條邊長度都相等;三個內角都是60 度;有三條對稱軸。4 平行四邊形( 1)特征兩組對邊分別平行的四邊形。相對的邊平行且相等。對角相等,相鄰的兩 個角的度數之和為 180 度。平行四邊形簡捷變形。( 2)計算公式s=ah5 梯形( 1)特征只有一組對邊平行的四邊形。等腰梯形有一條對稱軸。( 2)公式s=(a+b)h/26圓( 1)圓的認識同一個圓里,直徑等于兩個半徑的長度,即d=2r。圓的大小由半徑決定。圓有無數條對稱軸。( 2)圓的畫法把圓規的兩腳分開,定好兩腳間的距離(即半徑);把有針尖的一只腳不變在一

33、點(即圓心)上;( 3)圓的周長圍成圓的曲線的長叫做圓的周長。把圓的周長和直徑的比值叫做圓周率。用字母口表示。( 4)圓的面積圓所占平面的大小叫做圓的面積。( 5)計算公式d=2rr=d/2c=nd c=2 n r s=n r27、圓環(1)特征由兩個半徑不相等的同心圓相減而成,有無數條對稱軸。(2)計算公式s=n(R-22)9、軸對稱圖形(1)特征如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。正方形有4 條對稱軸,長方形有2 條對稱軸。等腰三角形有2 條對稱軸,等邊三角形有3 條對稱軸。等腰梯形有一條對稱軸,圓有無數條對稱軸。三立體圖形(一)長方體1 、特征六個面都是長方形(有時有兩個相對的面是正方形)。相對的面面積相等, 12 條棱相對的 4 條棱長度相等。有 8 個頂點。相交于一個頂點的三條棱的長度分別叫做長、寬、高。把長方體放在桌面上,最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論