


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、教案編號:06 年級段九年級學科主備人課題直線與圓的位置關系課時2課前準備三角板 圓規教學目標教學目標 :1、使學生掌握直線與圓的位置關系,能用數量來判斷直線與圓的位置關系。 2、進一步體會分類討論思想。教學重點、難點:用數量關系(圓心到直線的距離與半徑)判斷直線與圓的位置關系。教學過程(一)情境導入:用移動的觀點認識直線與圓的位置關系1、點與圓有幾種位置關系?若將點改成直線,那么直線與圓的位置關系又如何呢?同學們也許看過海上日出,如右圖中,如果我們把太陽看作一個圓,那么太陽在升起的過程中,它和海平面就有右圖中的三種位置關系。2、請同學在紙上畫一條直線,把硬幣的邊緣看作圓,在紙上移動硬幣,你能
2、發現直線與圓的公共點個數的變化情況嗎?公共點個數最少時有幾個?最多時有幾個?(二)實驗與探究1:從直線與圓公共點的個數來判斷直線與圓的位置關系從以上的兩個例子,可以看到,直線與圓的位置關系只有以下三種,如下圖所示:如果一條直線與一個圓沒有公共點,那么就說這條直線與這個圓相離,如圖28.2.6(1)所示 如果一條直線與一個圓只有一個公共點,那么就說這條直線與這個圓相切,如圖28.2.6(2)所示此時這條直線叫做圓的切線,這個公共點叫做切點如果一條直線與一個圓有兩個公共點,那么就說這條直線與這個圓相交,如圖28.2.6(3)所示此時這條直線叫做圓的割線2.如何用數量來體現圓與直線的位置關系呢?如上
3、圖,設o的半徑為r,圓心o到直線l的如上圖,設o的半徑為r,圓心o到直線l的距離為d,從圖中可以看出:若 直線l與o相離;若 直線l與o相切;若 直線l與o相交;反過來,若直線與圓相離則 若直線與圓相切則 若直線與圓相交則增刪、點評教學過程總結:所以,若要判斷圓與直線的位置關系,必須對圓心到直線的距離與圓的半徑進行比較大小,由比較的結果得出結論。3.知識梳理成表4.鞏固新知(小檢測一)練習1、已知圓的直徑徑等于13厘米,圓心到直線l的距離是:(1)4.5厘米;(2)6.5厘米;(3)8厘米.直線l和圓分別有幾個公共點?分別說出直線l與圓的位置關系。練習2、已知圓心到直線的距離等于4厘米,直線和
4、圓的關系分別為以下情況,那么圓的半徑分別應取怎樣的值. (1)相交(2)相切(3)相離(三)應用與拓展1.例題講解 在rtabc中,c=900,ac=3,bc=4,cmab于m,以c為圓心,r為半徑的圓與直線ab有怎樣的位置關系?(1)r=2cm (2)r=2.4cm(2)r=3cm2.鞏固新知(小檢測二)練習3、如果o的直徑為10厘米,圓心o到直線ab的距離為10厘米,那么o 與直線ab有怎樣的位置關系?練習4、rtabc中,c=900,ac=3,bc=4,cmab于m,以c為圓心,cm為半徑作c,則點a、b、c、ab的中點e與c的位置關系分別是 、 、 、 。(四)小結與作業本節課的學習你有哪些收獲與體會?1、直線與圓的位置關系有哪幾種?2、如何判斷直線與圓的位置關系?(1)直線與圓的公共點的個數;(2)圓心到直線的距離d與圓的半徑r之間的大小關系。增刪、點評板書設計直線與圓的位置關系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年微生物學與免疫學考試試題及答案
- Tesmilifene-fumarate-Standard-DPPE-fumarate-Standard-生命科學試劑-MCE
- mCherry-mRNA-N1-Me-Pseudo-UTP-生命科學試劑-MCE
- Halymecin-C-生命科學試劑-MCE
- 2025年青少年心理健康教育師考試試題及答案
- 2025年人工智能應用專業畢業生能力測試試題及答案
- 2025年社會心理學應用與研究方法考試試題及答案
- 2025年經濟法學專業考試相關試題及答案
- 2025年建筑設計專業研究生入學考試試卷及答案
- 2025年電子技術基礎考試試題及答案
- 2024年四川省涼山彝族自治州西昌市六年級語文小升初摸底考試含答案
- 云南白藥的盈利能力分析基于杜邦分析法
- 有關分手的研究報告
- JGJT405-2017 預應力混凝土異型預制樁技術規程
- JJF1059.1測量不確定度評定培訓講演稿
- 政府采購工程監理合同范本
- 電競酒店管理制度
- 方案偽裝防護要求
- 跨境支付中的金融穩定問題
- 2024年中石油煤層氣有限責任公司招聘筆試參考題庫含答案解析
- 大數據技術綜合實訓-實驗報告
評論
0/150
提交評論