




已閱讀5頁,還剩12頁未讀, 繼續免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2019-2020學年重慶市第七中學高一上學期第三次月考數學試題一、單選題1已知集合且,則集合可能是( )ABCD【答案】B【解析】根據集合且,分析集合是的子集,集合中必須有元素3,結合選項即可得解.【詳解】集合且,所以且.故選:B【點睛】此題考查根據集合并集得集合的包含關系,通過包含關系分析集合中的元素情況.2下列函數中,既是偶函數又存在零點的是( )Ay=lnxBCy=sinxDy=cosx【答案】D【解析】【詳解】選項A:的定義域為(0,+),故不具備奇偶性,故A錯誤;選項B:是偶函數,但無解,即不存在零點,故B錯誤;選項C:是奇函數,故C錯;選項D:是偶函數,且,故D項正確.【考點】本題主要考查函數的奇偶性和零點的概念.3若是第二象限角,則下列結論一定成立的是( )ABCD【答案】C【解析】由題意分析可能的象限,再利用三角函數在第一、三象限內的函數值的符號,即可得到結論【詳解】,當為偶數時,是第一象限角;當為奇數時,是第三象限角觀察四個選項,可知一定成立,故選C【點睛】本題考查了半角所在的象限問題,考查了三角函數值在各個象限的符號,考查判斷能力,屬于基礎題4已知是第三象限的角,若,則ABCD【答案】D【解析】根據是第三象限的角得,利用同角三角函數的基本關系,求得的值.【詳解】因為是第三象限的角,所以,因為,所以解得:,故選D.【點睛】本題考查余弦函數在第三象限的符號及同角三角函數的基本關系,即已知值,求的值.5設,則的大小關系ABCD【答案】B【解析】【詳解】試題分析: ,可知.故選B.6的一條對稱軸是( )ABCD【答案】C【解析】由題意, =k+,x=2k+,(kZ),的一條對稱軸是x=,故選C7函數的零點所在區間為,則為( )A1B2C3D4【答案】B【解析】利用零點存在性定理,求得的值.【詳解】依題意,由于函數為增函數,根據零點存在性定理可知,函數唯一零點所在區間為,故.故選B.【點睛】本小題主要考查零點存在性定理,考查函數值的求法,屬于基礎題.8設函數,若對任意的實數恒成立,則取最小值時,( )ABCD【答案】B【解析】對任意的實數恒成立即說明在處取最大值,即可求出的最小值,即可求出的值【詳解】由題意可知,得,則,可得的最小值為5,此時,則故選B【點睛】本題考查三角函數值,其關鍵在于根據其在取最大值解出三角函數,屬于基礎題9已知定義域的奇函數的圖像關于直線對稱,且當時,則( )ABCD【答案】B【解析】利用題意得到,和,再利用換元法得到,進而得到的周期,最后利用賦值法得到,最后利用周期性求解即可.【詳解】為定義域的奇函數,得到;又由的圖像關于直線對稱,得到;在式中,用替代得到,又由得;再利用式,對式,用替代得到,則是周期為4的周期函數;當時,得,由于是周期為4的周期函數,答案選B【點睛】本題考查函數的奇偶性,單調性和周期性,以及考查函數的賦值求解問題,屬于中檔題10函數的部分圖象如圖示,則將的圖象向右平移個單位后,得到的圖象解析式為 ( )ABCD【答案】D【解析】由圖像知A=1,得,則圖像向右移個單位后得到的圖像解析式為,故選D11若函數在上有最小值-5,(,為常數),則函數在上( )A有最大值5B有最小值5C有最大值3D有最大值9【答案】D【解析】考慮函數,是一個奇函數,根據函數對稱性,結合在上的最值情況即可得解【詳解】考慮函數,定義域為R,所以是奇函數,函數在上有最小值-5,則在上有最小值-7,根據函數奇偶性得:在上有最大值7,所以在上有最大值9.故選:D【點睛】此題考查函數奇偶性的應用,根據對稱性質分析函數的最值,屬于中檔題12任意時,恒成立,函數單調,則( )ABCD【答案】A【解析】設,根據單調函數,以及可知,當時,的值是唯一的;又,所以,求出的值,進而求出的解析式,即可求出結果.【詳解】設,則,因為單調函數,所以的解是唯一的;又,所以,所以,所以,所以;故選A.【點睛】本題考查了函數單調性含義及應用,本題理解函數單調性的含義是解題的關鍵,本題屬于中檔題.二、填空題13求函數的單調增區間為_.【答案】【解析】由題得,解不等式即得解.【詳解】由題得.由,所以所以函數的單調增區間為.故答案為:【點睛】本題主要考查正弦型函數的單調區間的求法,意在考查學生對這些知識的理解掌握水平.14計算: _.【答案】【解析】根據對數運算法則,結合公式(其中是不為1的正數),化簡計算【詳解】故答案為:【點睛】此題考查對數的化簡求值,關鍵在于熟練掌握對數運算法則,熟記相關公式15設扇形的半徑長為,面積為,則扇形的圓心角的弧度數是 【答案】【解析】試題分析:由扇形面積公式知,解得.【考點】扇形面積公式.16已知函數,且存在實數、,使若,則的取值范圍是_【答案】【解析】畫出圖像,根據對數運算判斷出,由的取值范圍,求得的取值范圍.【詳解】畫出圖像如下圖所示,由于,注意到,所以,結合圖像可知,即的取值范圍是.故答案為.【點睛】本小題主要考查分段函數的圖像與性質,考查對數運算,考查數形結合的數學思想方法,屬于基礎題.三、解答題17在平面直角坐標系中,已知角的始邊為x軸的非負半軸,終邊經過點P(-,)()求cos(-)的值;()若tan=2,求的值【答案】(I);(II).【解析】由任意角三角函數的定義可得,()可求()有,利用誘導公式及同角基本關系即可化簡求解【詳解】解:由題意可得cos=,sin,()cos(-)=-cos=,()tan=2,tan=,=【點睛】本題主要考查了三角函數的定義,同角基本關系的基本應用,屬于基礎試題18已知集合,()求,;()若,求實數的取值范圍【答案】(),或;()【解析】由并集的定義,在數軸上表示出集合即可求出;同時由補集的定義即可求出;由知;由是任何集合的子集,分和兩種情況進行討論,分別求出滿足條件的的取值范圍;最后合并的取值范圍即可.【詳解】()集合,或()由,當時,解得:當時,若,則,解得:綜上所述,實數的取值范圍是【點睛】本題考查集合的交并補混合運算;其中分和兩種情況討論求的取值范圍是本題的難點,亦是易錯點;易忽略;本題屬于常考題,易錯題.19已知函數是上的奇函數,當時,.(1)當時,求解析式;(2)若,求實數的取值范圍.【答案】(1);(2)【解析】(1)當時,根據奇偶性求解析式;(2)根據函數奇偶性,等價于解,結合單調性求解.【詳解】(1)函數是上的奇函數,當時,.當時,是上的奇函數,當時,所以;(2)由(1)可得當時,單調遞增,且函數值大于等于零,當時,單調遞增,且函數值恒小于零,所以函數是上的增函數,即,根據奇偶性得:,解得:【點睛】此題考查根據函數奇偶性求解析式,結合奇偶性和單調性解不等式,考查函數的綜合應用,屬于中檔題.20函數滿足,且方程的兩個根滿足.(1)求解析式;(2)若,函數在上的最小值為,求的值.【答案】(1) ;(2).【解析】【詳解】分析:(1)根據題設可知二次函數的對稱軸,進而求出的值,再利用求出方程的兩根,利用根與系數關系求出的值,進而寫出的解析式;(2)解復合函數問題,采用換元法,令,求出的取值范圍,再利用二次函數的單調性及最值列出方程,解方程求得的值.詳解:(1)由題設知函數的對稱軸為,又,的兩根分別為,由根與系數關系得, 函數的解析式為.(2)令,由知,則在的最小值為,易知在上為減函數,所以,即,解得或,因為,所以.點睛:(1)關于對稱的常用結論:若對于上的任意都有或,則的圖象關于直線對稱;(2)在采用換元法解決問題時,注意標明新元的范圍.21函數的部分圖象如圖,是圖象的一個最低點,圖象與軸的一個交點坐標為,與軸的交點坐標為.(1)求,的值;(2)關于的方程在上有兩個不同的解,求實數的取值范圍【答案】(1) ,(2) 【解析】(1)利用的部分圖象可求得其周期,從而可求得;由其圖象與軸的一個交點坐標為,及可求得,當時,可求得;(2)求出函數在,的取值情況,利用數形結合即可得到結論【詳解】解:(1)由題圖可知,函數的周期,圖象與軸的一個交點坐標為,故由得,當時,綜上可知,(2)由(1)可得:當時,可得:由得,要使方程在上有兩個不同的解則在上有兩個不同的解,即函數和在上有兩個不同的交點,由圖象可知即【點睛】本題考查的部分圖象確定函數解析式,求得、的值是關鍵,考查三角函數的圖象和性質,考查了數形結合思想的應用,屬于中檔題22已知函數是定義域為的奇函數.(1)求實數的值;(2)若,不等式在上恒成立,求實數的取值范圍;(3)若且在 上的最小值為,求的值.【答案】(1)(2)(3)【解析】(1)根據奇函數定義確定,代入可得實數的值,再利用定義證明時,函數為奇函數,(2)先研究函數單調性:為上的單調遞增函數,再利用奇函數和單調性轉化不等式,最后再根據一元二次不等式恒成立,利用判別式恒負求實數的取值范圍;(3)先根據條件,解出的值.再根據與的關系,將函數轉化為一元二次函數,根據對稱軸與定義區間位置關系討論最小值取法,最后由最小值為,求出的值.【詳解】(1)因為是定義域為的奇函數,所以, 所以,所以, (2)由(1)知:,因為,所以,又且,所以,所以是上的單調遞增, 又是定義域為的奇函數,所以即在上恒成立, 所以,即,所以實數的取值范圍為. (3)因為,所以,解得或(舍去),所以,令,則,因為在上為增函數,且,所以,因為在上的最小值為,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學畢業論文答辯范文黑板粉筆效果
- 解析匯編化學-11化學實驗基礎
- 2025年江西省中考數學試卷
- 設備的維修與管理
- 廣東省惠州市五校2024-2025學年高二下學期第二次聯考生物試卷(有答案)
- 幼兒園春天教案《歌唱春天》
- 【高中語文】高一下學期天一聯考語文試題分析課件
- 部編版六年級上冊第三單元《竹節人》教案
- 建筑施工特種作業-建筑起重機械安裝拆卸工(塔式起重機)真題庫-8
- 日語話題題目大全及答案
- 2025年高考化學湖北卷試題真題解讀及復習備考指導(精校打印)
- 2025年連云港市中考數學試題卷(含答案)
- 2024初級會計職稱考試《經濟法基礎》真題和答案
- CJ/T 358-2019非開挖工程用聚乙烯管
- 2025年遼寧省沈陽市于洪區中考數學二模試卷
- 輻射安全與防護培訓考試題庫及答案
- 理論聯系實際闡述文化在社會發展中具有什么樣的作用?參考答案四
- 四川雅安天立學校2025年七下數學期末預測試題含解析
- 2025年度汽車維修企業員工保密及競業禁止合同范本
- 國網35條嚴重違章及其釋義解讀課件
- 供電一把手講安全課
評論
0/150
提交評論