高考數學一輪復習 第8章 平面解析幾何 8.5 橢圓課后作業 理.doc_第1頁
高考數學一輪復習 第8章 平面解析幾何 8.5 橢圓課后作業 理.doc_第2頁
高考數學一輪復習 第8章 平面解析幾何 8.5 橢圓課后作業 理.doc_第3頁
高考數學一輪復習 第8章 平面解析幾何 8.5 橢圓課后作業 理.doc_第4頁
高考數學一輪復習 第8章 平面解析幾何 8.5 橢圓課后作業 理.doc_第5頁
免費預覽已結束,剩余5頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

85橢圓重點保分 兩級優選練a級一、選擇題1(2018江西五市八校模擬)已知正數m是2和8的等比中項,則圓錐曲線x21的焦點坐標為()a(,0) b(0,)c(,0)或(,0) d(0,)或(,0)答案b解析因為正數m是2和8的等比中項,所以m216,則m4,所以圓錐曲線x21即為橢圓x21,易知其焦點坐標為(0,),故選b.2(2017湖北荊門一模)已知是abc的一個內角,且sincos,則方程x2siny2cos1表示()a焦點在x軸上的雙曲線b焦點在y軸上的雙曲線c焦點在x軸上的橢圓d焦點在y軸上的橢圓答案d解析因為(sincos)212sincos,所以sincos0,結合(0,),知sin0,cosb0)的左、右頂點分別為a1,a2,且以線段a1a2為直徑的圓與直線bxay2ab0相切,則c的離心率為()a. b. c. d.答案a解析由題意知以a1a2為直徑的圓的圓心為(0,0),半徑為a.又直線bxay2ab0與圓相切,圓心到直線的距離da,解得ab,e .故選a.5已知橢圓1(ab0)與雙曲線1(m0,n0)有相同的焦點(c,0)和(c,0),若c是a,m的等比中項,n2是2m2與c2的等差中項,則橢圓的離心率為()a. b. c. d.答案c解析因為橢圓1(ab0)與雙曲線1(m0,n0)有相同的焦點(c,0)和(c,0),所以c2a2b2m2n2.因為c是a,m的等比中項,n2是2m2與c2的等差中項,所以c2am,2n22m2c2,所以m2,n2,所以c2,化為,所以e.故選c.6(2017荔灣區期末)某宇宙飛船運行的軌道是以地球中心為一焦點的橢圓,測得近地點距地面m千米,遠地點距地面n千米,地球半徑為r千米,則該飛船運行軌道的短軸長為()a2千米 b.千米c2mn千米 dmn千米答案a解析某宇宙飛船的運行軌道是以地球的中心f2為一個焦點的橢圓,設長半軸長為a,短半軸長為b,半焦距為c,則近地點a距地心為ac,遠地點b距地心為ac.acmr,acnr,ar,c.又b2a2c222mn(mn)rr2(mr)(nr)b,短軸長為2b2千米,故選a.7(2017九江期末)如圖,f1,f2分別是橢圓1(ab0)的兩個焦點,a和b是以o為圓心,以|of1|為半徑的圓與該橢圓左半部分的兩個交點,且f2ab是等邊三角形,則該橢圓的離心率為()a. b. c.1 d.答案c解析連接af1,f1f2是圓o的直徑,f1af290,即f1aaf2,又f2ab是等邊三角形,f1f2ab,af2f1af2b30,因此,在rtf1af2中,|f1f2|2c,|f1a|f1f2|c,|f2a|f1f2|c.根據橢圓的定義,得2a|f1a|f2a|(1)c,解得ac,橢圓的離心率為e1.故選c.8(2018鄭州質檢)橢圓1的左焦點為f,直線xa與橢圓相交于點m,n,當fmn的周長最大時,fmn的面積是()a. b. c. d.答案c解析設橢圓的右焦點為e,由橢圓的定義知fmn的周長為l|mn|mf|nf|mn|(2|me|)(2|ne|)因為|me|ne|mn|,所以|mn|me|ne|0,當直線mn過點e時取等號,所以l4|mn|me|ne|4,即直線xa過橢圓的右焦點e時,fmn的周長最大,此時sfmn|mn|ef|2,故選c.9如圖所示,內外兩個橢圓的離心率相同,從外層橢圓頂點向內層橢圓引切線ac,bd,設內層橢圓方程為1(ab0),若直線ac與bd的斜率之積為,則橢圓的離心率為()a. b. c. d.答案c解析設外層橢圓方程為1(ab0,m1),則切線ac的方程為yk1(xma),切線bd的方程為yk2xmb,則由消去y,得(b2a2k)x22ma3kxm2a4ka2b20.因為(2ma3k)24(b2a2k)(m2a4ka2b2)0,整理,得k.由消去y,得(b2a2k)x22a2mbk2xa2m2b2a2b20,因為2(2a2mbk2)24(b2a2k)(a2m2b2a2b2)0,整理,得k(m21)所以kk.因為k1k2,所以,e2,所以e,故選c.10(2018永康市模擬)設橢圓c:1(ab0)和圓x2y2b2,若橢圓c上存在點p,使得過點p引圓o的兩條切線,切點分別為a,b,滿足apb60,則橢圓的離心率e的取值范圍是()a0e b.e1c.e1 d.eb0)焦點在x軸上,連接oa,ob,op,依題意,o,p,a,b四點共圓,apb60,apobpo30,在直角三角形oap中,aop60,cosaop,|op|2b,b|op|a,2ba,4b2a2,由a2b2c2,即4(a2c2)a2,3a24c2,即,e,又0e1,e1,橢圓c的離心率的取值范圍是eb0),a,b為橢圓上的兩點,線段ab的垂直平分線交x軸于點m,則橢圓的離心率e的取值范圍是_答案解析設a(x1,y1),b(x2,y2),x1x2,則即所以(x1x2)(xx),所以x1x2.又ax1a,ax2a,x1x2,所以2ax1x22a,則2a,即.又0e1,所以eb0)的右焦點,直線y與橢圓交于b,c兩點,且bfc90,則該橢圓的離心率是_答案解析由已知條件易得b,c,f(c,0),由bfc90,可得0,所以20,c2a2b20,即4c23a2(a2c2)0,亦即3c22a2,所以,則e.b級三、解答題15(2018安徽合肥三校聯考)已知橢圓的中心在原點,焦點在x軸上,離心率為,且橢圓經過圓c:x2y24x2y0的圓心c.(1)求橢圓的方程;(2)設直線l過橢圓的焦點且與圓c相切,求直線l的方程解(1)圓c方程化為(x2)2(y)26,圓心c(2,),半徑r.設橢圓的方程為1(ab0),則所以所以所求的橢圓方程是1.(2)由(1)得橢圓的左、右焦點分別是f1(2,0),f2 (2,0),|f2c| b0)過點p(2,1),且離心率e.(1)求橢圓c的方程;(2)直線l的斜率為,直線l與橢圓c交于a,b兩點求pab面積的最大值解(1)e2,a24b2.又橢圓c:1(ab0)過點p(2,1),1.a28,b22.故所求橢圓方程為1.(2)設l的方程為yxm,點a(x1,y1),b(x2,y2),聯立整理得x22mx2m240.4m28m2160,解得|m|b0),橢圓的左焦點為f1(2,0),a2b24.點b(2,)在橢圓c上,1,解得a28,b24,橢圓c的方程為1.(2)依題意點a的坐標為(2,0),設p(x0,y0)(不妨設x00),則q(x0,y0),由得x0,y0,直線ap的方程為y(x2),直線aq的方程為y(x2),m,n,|mn|.設mn的中點為e,則點e的坐標為,則以mn為直徑的圓的方程為x22,即x2y2y4,令y0得x2或x2,即以mn為直徑的圓經過兩定點p1(2,0),p2(2,0)18(2018湖南十校聯考)如圖,設點a,b的坐標分別為(,0),(,0),直線ap,bp相交于點p,且它們的斜率之積為.(1)求點p的軌跡方程;(2)設點p的軌跡為c,點m,n是軌跡c上不同于a,b的兩點,且滿足apom,bpon,求證:mon的面積為定值解(1)設點p的坐標為(x,y),由題意得,kapkbp(x),化簡得,點p的軌跡方程為1(x)(2)證明:由題意知,m,n是橢圓c上不同于a,b的兩點,且apom,bpon,則直線ap,bp的斜率必存在且不為0.因為apom,bpon

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論