




已閱讀5頁,還剩2頁未讀, 繼續免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
探究抽屜原理 河南省新鄉市紅旗區關屯學校 李學萍【教學目標】1經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決 簡單的實際問題。2 通過操作發展學生的類推能力,形成比較抽象的數學思維。3 通過“抽屜原理”的靈活應用感受數學的魅力。【教學重點】經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。【教學難點】理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。【教具、學具準備】每組都有相應數量的盒子、鉛筆、書。【教學過程】一、課前游戲引入。師:有3本書,2個抽屜。把3本書放進2個抽屜,怎么放?有幾種不同的放法?師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據學生擺的情況,師板書各種情況 (3,0) (2,1)【點評】此處設計教師注意了從最簡單的數據開始擺放,有利于學生觀察、理解,有利于調動所有的學生積極參與進來。二、通過操作,探究新知(一)教學例11出示題目:師:把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)師:誰來展示一下你擺放的情況?(指名擺)根據學生擺的情況,師板書各種情況。(4,0,0)(3,1,0)(2,2,0)(2,1,1),師:還有不同的放法嗎?生:沒有了。師:你能發現什么?生:不管怎么放,總有一個盒子里至少有2枝鉛筆。師:“總有”是什么意思?生:一定有師:“至少”有2枝什么意思?生:不少于兩只,可能是2枝,也可能是多于2枝?師:就是不能少于2枝。(通過操作讓學生充分體驗感受)師:把4枝筆飯放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現了這個結論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結論呢?學生思考組內交流匯報師:哪一組同學能把你們的想法匯報一下?組1生:我們發現如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。師:你能結合操作給大家演示一遍嗎?(學生操作演示)師:同學們自己說說看,同位之間邊演示邊說一說好嗎?師:這種分法,實際就是先怎么分的?生眾:平均分師:為什么要先平均分?(組織學生討論)生1:要想發現存在著“總有一個盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個盒子里,一定會出現“總有一個盒子里一定至少有2枝”。生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?師:同意嗎?那么把5枝筆放進4個盒子里呢?(可以結合操作,說一說)師:哪位同學能把你的想法匯報一下,生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。師:把6枝筆放進5個盒子里呢?還用擺嗎?生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。師:把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?你發現什么?生1:筆的枝數比盒子數多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。師:你的發現和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。【點評】教師關注了“抽屜原理”的最基本原理,物體個數必須要多于抽屜個數,化繁為簡,此處確實有必要提領出來進行教學。在學生自主探索的基礎上,教師注意引導學生得出一般性的結論:只要放的鉛筆數盒數多1,總有一個盒里至少放進2支。通過教師組織開展的扎實有效的教學活動,學生學的有興趣,發展了學生的類推能力,形成比較抽象的數學思維。2解決問題。(1)課件出示:7鴿子飛回5鴿籠,至少有2只鴿子要飛進同一個鴿籠里,為什么?(學生活動獨立思考 自主探究)(2)交流、說理活動。師:誰能說說為什么?生1:如果一個鴿籠里飛進一只鴿子,最多飛進5鴿子,還剩2,要飛進其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進同一個鴿籠里。生2:我們也是這樣想的。生3:把7鴿子平均分到5籠子里,每個籠子1只,剩下2只,放到任何一個籠子里,就能保證至少有2只鴿子飛進同一個籠里。生4:可以用75=12,余下的2只,飛到任何一個鴿籠里都能保證至少有2只鴿子飛進一個個籠里,所以,“至少有2只鴿子飛進同一個籠里”的結論是正確的。師:許多同學沒有再擺學具,證明這個結論是正確的,用的什么方法?生:用平均分的方法,就能說明存在“總有一個鴿籠至少有2只鴿子飛進一個個籠里”。師:同意嗎?(生:同意)老師把這位同學說的算式寫下來。師:同位之間再說一說,對這種方法的理解。師:現在誰能說說你對“總有一個鴿籠里至少飛進2只鴿子的理解”生:我們發現這是必然存在的一個現象,不管鴿子怎樣飛回鴿籠,一定會有一個鴿籠里至少有2只鴿子。師:同學們都有這個發現嗎?生眾:發現了。師:同學們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結論。同學們的思維也在不知不覺中提升了許多,那么讓我們再來看這樣一組問題。(二)教學例21出示題目:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?把7本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?把9本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?(留給學生思考的空間,師巡視了解各種情況)2學生匯報。生1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。板書:5本 2個 2本 余1本 (總有一個抽屜里至有3本書)7本 2個 3本 余1本(總有一個抽屜里至有4本書)9本 2個 4本 余1本(總有一個抽屜里至有5本書)師:2本、3本、4本是怎么得到的?生答完成除法算式。52=2本1本(商加1)72=3本1本(商加1)92=4本1本(商加1)師:觀察板書你能發現什么?生1:“總有一個抽屜里的至少有2本”只要用 “商+ 1”就可以得到。師:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?生:“總有一個抽屜里的至少有3本”只要用53=1本2本,用“商+ 2”就可以了。生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。師:到底是“商+1”還是“商+余數”呢?誰的結論對呢?在小組里進行研究、討論。交流、說理活動:生1:我們組通過討論并且實際分了分,結論是總有一個抽屜里至少有2本書,不是3本書。生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的2本可以在2個抽屜里再各放1本,結論是“總有一個抽屜里至少有2本書”。 生3我們組的結論是5本書平均分放到3個抽屜里,“總有一個抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。師:現在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?生4:如果書的本數是奇數,用書的本數除以抽屜數,再用所得的商加1,就會發現“總有一個抽屜里至少有商加1本書”了。師:同學們同意吧?師:同學們的這一發現,稱為“抽屜原理”,“ 抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用。“抽屜原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。3解決問題。71頁第3題。(獨立完成,交流反饋)小結:經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。【點評】在這一環節的教學中教師抓住了假設法最核心的思路就是用“有余數除法” 形式表示出來,使學生學生借助直觀,很好的理解了如果把書盡量多地“平均分”給各個抽屜里,看每個抽屜里能分到多少本書,余下的書不管放到哪個抽屜里,總有一個抽屜里比平均分得的書的本數多1本。特別是對“某個抽屜至少有書的本數”是除法算式中的商加“1”, 而不是商加“余數”,教師適時挑出針對性問題進行交流、討論,使學生從本質上理解了“抽屜原理”。三、應用原理解決問題師:我這里
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中央廚房加工管理制度
- 企業發貨退貨管理制度
- 鄉鎮權力清單管理制度
- 進出口疫情防控管理制度
- 倉庫物料采購管理制度
- 人口文化大院管理制度
- AI賦能企業人才培養與留存策略
- 企業費用開支管理制度
- 上海現代醫院管理制度
- 中鐵二局資金管理制度
- 安全檢查作業行為規范與專業知識 -改
- 學校信息化建設十五五規劃方案
- 2025年保險專業知識能力測試題及答案
- 小學民法典主題班會教案
- 2025年江西報業傳媒集團招聘題庫帶答案分析
- 公司退貨流程管理制度
- MHD多相流體系統的建模與仿真-洞察闡釋
- 辦公軟件實操試題及詳細答案
- 礦產品銷售合作合同范本
- 米粉項目可行性分析報告
- 江蘇省常州市聯盟學校2022-2023學年高一下學期期末聯考數學試題(學生版)
評論
0/150
提交評論