




已閱讀5頁,還剩32頁未讀, 繼續免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
畢業 論文 ( 設計 ) 外文翻譯 題 目 機械臂動力學與控制的研究 系 部 名稱 : 機械工程 系 專業班級: 機自 學生姓名: 學 號: 指導教師: 教師職稱 : 20*年 03月 20日 1 2009 年 IEEE 國際機器人和自動化會議 神戶國際會議中心 日本神戶 12-17,2009 機械臂動力學與控制的研究 拉 斯彼得 Ellekilde 摘要 操作器和移動平臺的組合提供了一種可用于廣泛應用程序 高效靈活的操作系統 ,特別是在服務性機器人領域。 在 機械臂 眾多 挑戰中其 中之 一是確保機器人在潛在的動態環境中安全工作控制系統的設計。在本文中 ,我們將介紹移動機械臂用動力學系統方法被控制的使用方法。該方法是一種二級方法 , 是使用競爭 動力學對于統籌協調優化移動平臺以及較低層次的融合避障和目標捕獲 行為 的方法 。 I 介紹 在過去的幾十年里大多數機器人的研究主要關注在移動平臺或操作系統,并且在這兩個領域取得了許多可喜的成績。今天的新挑戰之一是將 這兩個領域組合在一起形成具有高效移動和有能力操作環境的系統。特別是服務性機器人將會在這一方面系統需求的增加。 大多數西方國家的人口統計數量顯示需要照顧的老人在不斷增加 ,盡管將有很少的工作實際的支持他們。這就需要增強服務業的自動化程度,因此機器人能夠在室內動態環境中安全的工作是最基本的。 2 圖、 1 一臺由 賽格威 RMP200和輕重量型 庫卡機器人 組成的平臺 這項工作平臺用于如圖 1所示 ,是由一個 Segway與一家機器人制造商制造的 RMP200輕機器人。其有一個相對較小的軌跡和高機動性能的平臺使它適應在室內環境移動 。庫卡工業機器人具有較長的長臂和高有效載荷比自身的重量 ,從而使其適合移動操作。 當控制移動機械臂系統 時 ,有一個選擇是是否考慮一個或兩個系統的實體。在參考文獻 1和 2中是根據 雅可比理論 將機械手末端和移動平臺結合在一起形成一個單一的控制系統。另一方面 ,這項研究發表在 3和 4,認為它們 在設計時 是獨立的實體 ,但不包括兩者之間的限制條件 ,如延伸能力和穩定性。 這種控制系統的提出是基于動態系統方法 5,6。它分為兩個層次, 其中 我們在較低的水平,并考慮到移動平臺作為兩個獨立的實體,然后再以安全的方式結合 在上層操縱者 。 在本文中主要的研究目的是展現動力系統方法可以應用于移動機械臂和使用各級協調行為的控制。 本文剩下的安排如下 。第二部分介紹系統的總體結構設計 ,其次是機械手末端移動平臺的控制在第三第四部分講述。在第五部分我們 在結束本文之前將顯示 一些 實驗 。然而 , 首先 與 動力學系統 有關 工作總結與方法 將在 在部分 I-A提供。 3 A.相關工作 動力學系統接近 5, 6為控制機器人提供一套 動作 的 框架 ,例如障礙退避和目標捕捉。 每 個動作 通過一套一個非線性動力學系統的 attractors和 repellors來完成 。 這些通 過向量場的簡單的加法被結合 在一起來完成 系統 的整體 動作 。動力系統的方法涉及到更廣泛的應用勢場法 7,但具有一定的優勢。 這里 勢場法的行為 是 由 后場梯度 形成的結果,行為變量,如航向和速度,可直接 運用 動力系統 控制 的方法。 成本相對較低的計算與方法有關,使得它在動態環境中在線控制適宜,允許它即使在相當低的水平有限的計算能力平臺 8實施。傳感器的魯棒性 在 人聲嘈雜中顯示 9和10其中一個 是由 紅外傳感器和麥克風的結合, 當 避障和目標獲取 時 使用。盡管能解決各種各樣的任務 ,但 它 僅是 一個 局部的 方法,為了 其他的任務 和使命級 計 劃 (即參見 11)其他的方法 應該 被采用 。 當多行為被結合時 ,在 5和 6的缺點是由潛在的假的因子引起的。 為了克服這個問題 12介紹了一種基于 競爭動態的行為比重。每個行為的影響是控制使用一個 相關的競爭優勢,再加上定義的行為之間有競爭力的相互作用,控制 重物 。 如果所有的行為之間的競爭性相互作用是必 需 的 , 這種方法可以推廣到任意數 n,行為, 除了這樣一個 最壞情況 的 復雜 度 2n 。 在 現實世界中使用這種方法的競爭態勢室內實驗中可以找到 13, 14。 13是 只在 有標題方向的車輛 上 使用,而在 14中 航向和速度 均 得到控制。 15提供了一個 為 速度 性能 簡短的 策略 討論 。 在 16中提到 動力系統的方法不僅被用于平面移動機器人,同時也 可以作 為控制機械手工具 。 另外運用 產生極限環 Hopf振蕩器動力系統 的 更復雜的 動力系統 也可 被 使用。 17展現出 不同形狀的極限環 是如何產生的 , 其可運用于避障軌跡的生成 。 18中介紹到 使用 Hopf振蕩器產生一個定時的軌跡,實現了機械手 可以 接 住從桌子上面滾下來的球 。動力系統的方法不僅可以用于控制的工具,也 可以 控制 7 自由度 機械手 多余的動作這 一點在 19中得到論證 。 II.總體結構 我們 整個 系統的整體架構如圖 2 所示。 在 賽格威平臺 中為了 控制移動 平臺 ,兩個低級別的 性能被 使用:一個用于目標捕獲和 另一個是 避障。 運用競爭動態的動作被混合在 4 一起是為了做出移動平臺希望得到的指定的移動動作 。同樣, 在 競爭態勢的基礎上 目標捕獲和機械手避障行為 的 融合給機器人 收縮下達指令 。當目標不在范圍 內 ,應收回機械手到一個安全的 位置 ,這是機械手縮回行為的目的。最后融合 是以一 個安全的 方式把所有的控制結合在一起 ,這樣 一來 目標捕獲和收回行為不互相干擾 ,另外 移動平臺 在 不開始朝著新的目標之 前,移動機械手已被收回。 圖 .2. 控制系統的 體系結構 用 wmobile 、 manipacquisitionw和 manipretractw分別 代表 機械手 移動 、 機械手 捕獲 和機械手 收縮 行為的影響,控制信號 mobileu 和 manipq 通過( 1)( 2) 移動平臺和機械手 。 le ftr ig h tum o b ile m o b ile uuw ( 1) m a n i p m a n i pm a n i p m a n i pm a n i pa c q u i s i t i o na c q u i s i t i o n r e t r a c t r e t r a c tqq qww (2) 其中(leftu rightu) 是指 控制輸入 信號以控制 在第三節中描述的平臺的左,右側車輪 ;manipacquisitionq 和 manipretractq 是 在第四節描述的機械手關節速度。 A.競爭動態 5 這種 競爭態 勢采用的方法是 以 12為基礎 的 , 除了附加 參數bT用于控制在 14中 的轉換率。動力系統采用 ( 3) 因此給予 : 3 2( ) ,b b b b b bbbbT w a w w r b b w w n o i s e ( 3) 其中ba是 b和 rb 競爭優勢 產生的參數 , b是 b 和 b相互 競爭 作用的參數 。 1)移動: 在移動平臺 遠離目標時它的競爭優勢應該被加強 ;當目標被捕獲時移動平臺的競爭優勢應該被降低。 這是通過 ( 4)實現的。 t a n h ( ( ) )m o b i l e m o b i l e m o b i l ea t a r t h r e s h o l da k d d ( 4) 其中, mobileak決定如何迅速的 改變 這種優勢 ,tard是 指 到目標的距離和 mobilethresholdd是 指 移動平臺移動目標 所需的最小距離 。 移動的行為,沒有能力進行互動,并抑制其他行為,因此它的競爭性相互作用被設置為 0。 2) 機械手 捕獲目 標 : 當移動平臺接近他的目標時,機械手捕獲目標的動作應該別加強 。這樣的競爭優勢將被定義為 : t a n h ( ( ) )m a n i p m a n i p m a n i pa c u i s i t i o n a t a r t h r e s h o l da k d d ( 5) 激活距離 manipthresholdd必須大于 mobilethresholdd來確保其行為被激活。此 動作沒有和其他的動作有直接 聯系 ,因此它的 相互作用參數 設置為 0。 3)機械手收縮: 收回 動作 應該被激活 當對面目標被捕獲之后 ,因此 m anip m anipretract acqisitionaa t a n h ( ( ) )m a n i p m o b i l ea t a r t h r e s h o l dk d d ( 6) 要有 一個非常小的過渡時間 , 這可以防止在同一時間活動的機械臂 捕獲 和 收縮動作 ,因此,我們可以設 置, 0retract acquisitionr 。由于機械手收縮和移動動作的聯系,當機械手原理自動巡航裝置時我們希望能夠取消停止移動 。 因此 這種相互作用 定義為 : hom, 1 ( 1 t a n h ( ( ) ) )2 r e t r a c tr c u r r e n t e qr e t r a c t a c q u i s i t i o n k q qr ( 7) 6 其中curq和homeq,是 機械手 當前和原始配置參數 ,q是 指 目標homeq最近 的距離和 retractrk指定如何 使 相互作用 迅速變化 的參數 。 III. 移動平臺的控制 該 移動平臺的控制, 結構 與參考文獻 14中表述的 非常相似 ,但 也 有一些 不同 。 剛開始時 目標捕獲和避障 指令被使用 。 緊接著除 走廊和墻壁 避障 不包括在內,但將 沿直線擴展。第二個領域,不同的是這項工作的障礙 是 如何 找出障礙 密度的計算方法。 具體的論述 在 III-D部分 。 為了使控制系統能夠根據具體的環境進行導航 。我們所使用的方法是基于 參考文獻20中論述 的方法,它 運用 里程計和激光測距 相結合 對 所 在環境 中 地圖 的主導線 匹配測量。 該平臺 控制編碼的使用方向 : ; 速度 : V,它在一個控制輸入系統的結果 數 ,m obilef 的值是由兩部分組成, mobiletarf 和 mobileobsf ,這 里 合并為 m o b i l e m o b i l e m o b i l em o b i l e m o b i l et a r o b st a r o b sf f fww ( 8) 其中 mobiletarw和 mobileobsw是被 Eq限制 的。 (3)中的 競爭優勢 和相互作用在 III-C中有詳細的描述 。 作為控制輸入我們需要一個表達式對移動平臺的左右輪進行控制 , 這里用leftu和,rightu分別 作為 左,右側車輪的表達 參數 。要 使 獲得這些 數據 v 集成得到 v,連同所需的旋轉速度 時,車輪直徑wheeld和車輪之間的距離wheelbased可以用數據 庫來計算控制輸入 : ( , ) 2l e f tw h e e lvv du ( 9) ( , ) 2r i g h t r i g h tw h e e lvv duu ( 10) 這里 車 輪 需要 的速度差 被定義為: w heelbasew heeldd ( 12) 7 A.動態目標 : 捕獲目標動作 的基本動力是 : , ,( ) s i n ( )m o b i l e m o b i l et a r t a rt a rf (13) , , m a x( ) ( m i n ( , ) )m o b i l e v m o b i l e v m o b i l et a r t a r t a rt a r v k d v vf (14) 其中 ,mobiletar 和 ,mobilevtar是吸引子的優勢 參數 和tar表示運動到 目標 的 方向。 常數 mobiletark表達出機械手 到目標之間的距離和所需的速度關系。最后 最大速度maxv是 指移動平臺所允許的最大速度 。 B.障礙動態 假 定一個距離,obsid, 方向參數 i 表示 機械手到第 i個障礙的 方向 ,在避障的動力學中用 公式( 15)( 16)表示如下: 22,(),2, ()im o b i l eo b s o b s i im o b i l e cdm o b i l eo b s io b s i eef (15) ,m i n m i n,m i n m a x ,m a x , m a x ,()0()m o b i l e vobsm o b i l e vio b s im o b i l e vo b s i iv v f o r v vf o r v v vv v f o r v vf (16) 其中m a x , , m i nm a x ( , )i o b s o b s iv k d v 動態 參數 包括三個要素:(一)障礙物 ()i的相對方向 ,(二) 比例系數 ,mobileobs obs icde ,其 中 mobileobsc根據距離,obsid決定 衰減的 程度。 (三) 另一個比例系數 22()2 iie 根據到 障礙 的方向而定的 ,并 運用,1a r c s i n ( )1 si o b s iDd確保兩 障礙 間的 attractor 產生 ,如果機器人可以在確保安全距離 DS下 通過 。 我們可以在參考文獻 14中看到具體的描述 。 對于 ,mobile vobs if是表示 調整速度 轉向,obs obs ikd, 但確保 minv 最小速度 是 被保留 的 。 運用公式( 17) 獲取 我們總結 所有障礙 mobileobsf的 值 : 8 ,( ) ( )m o b i l em o b i l em o b i l e o b s iobsm o b i l e v m o b i l e vobs io b s o b s ifffff ( 17) C.競爭動態 在競爭態勢的 運算 如上面所述 公式 ( 3) 控制的 。下面是最大的競爭優勢和兩種 動作的相互作用。 1) 目標 : 每當一個目標是存在的 , 競爭優勢 的參數就被 設置為tar 0.5mobile , 否則 設置為tar 0.5mobile 。 目標 動作有能力 能力 影響 和抑制避障 動作 ,目標之間的距離和最 近 的 目標之間的 比例足以確保 向目標移動的動作 是無碰撞運動。這 時 建模為 : , m i n, l i m1 ( 1 t a n h ( ( ) ) )2 obsm o b i l e m o b i l e m o b i l et a r o b s g a i n i tt a rrrdd ( 18) 其中,minobsd到最近障礙物的距離, mobilegainr是一 個如何快速是動作相互影響的 增益常數 , 我們將開始抑制避障 時lim 1mobileitr 表示 障礙和目標 之間 的距離比。 2)障礙: 該障礙 動作的 競爭優勢 有公式( 19)控制: 00t a n h ( )m o b i l e m o b i l em o b i l eobs m o b i l e ( 19) 其中 mobile 是 障礙 密度 在第三節 - D被 定義。 這種相互作用被定義為 0,1 (1 t a n h ( ) ) (1 ) ) )2m o b i l e m o b i l eo b s t a r t a r o b s ( 20) 第一部分01 ( 1 t a n h ( ) )2 m o b i l e m o b i l e 抑制 目標動作當 障礙濃度超過臨界值 0mobile 時 ,最后一部分,1 mobiletar obs可以確保這只是發生 在由于,mobiletarobs的原因 避障沒有被抑制 。 D.障礙密度的計算 假設一系列的距離,,obsid, 移動平臺和障礙的密度 ,計算 公式 為 9 ,1m a xi o b s id ( 21) 此處的定義不同于 14中的,obs idi e 。 公式化 的主要問題是,我們不能區分物體的相對多遠 和 一個對象 相對多近 。例如 2米外 有 5個對象 的密度定義成 相同的密度 與 40厘米的距離 之外的一個對象 。 根據 指數函數 的性質 在場景中的單個對象永遠不能導致 超 1。用于切換到避障 動作 的 臨界值 將因此必須小于 1,但 一個 場景中 有多樣 的障礙往往臨界值設置的更低 。 此外,發現 用 ,1obsid 代替 ,obsie 參數 調整 更 容易,因為我們 可以考慮其 作為距離 的 反比密度。 這也造成了當越來越接近一個障礙 時 密度增長非常迅速,從而 可以 迅速迫使 動作改變。 IV.機械手的控制 我們將 這個問題 分成兩部分 : 1) 確定 機械手的運動 ,從當前位置到目標,同時避免障礙。 2) 計算所需刀具 的 逆 運動 的 速度 。 第二部分是一個很好的理解問題,這項工作 可以運用在參考文獻 23中描述的逆運動學方法 解決。這種方法包括機器人運動學和動力學的 局限性 ,如關節的位置,速度和加速度的 限制。此外, 在此 方法的基礎上, 進行 二次優 化 獲得方法 已 被 證明 表現很突出 。 該 機械手的運動受 機器人控制 的 目標和障礙 動作限制 , 為 此 maniptar和 manipobs是相關的 。由于 逆運動學 的輸入 需要一個六維 旋轉速度 , , , , ,x y zx y z ,因此這些動作必須設置一個變數 , , , , ,m a n i p x y zf x y z , 它可以集成所需的 速度 des .,( ( ) )m a n i p m a n i p m a n i p m a n i p m a n i pd e s c u r t a r t a r o b s o b s d i r o b s d i s td t f f f ( 22) 其中 maniptarf,.manipobsdirf和,manipobsdistf是從目標和 避障中 得到的 。 A.目標動作 到目標行為的輸入是當前和所需的工具轉換cur和des。 從這些我們可以計算出所需 10 的六維速度螺桿tar。 為避免要求不切實際的快速運動 它的范圍是 m a x,ta rx y z v和 m a x,x y z ta rw w w , maxv 和 max 代表 最大允許的機床直線和旋轉速度。 計算 ()m a n i p m a n i pt a r t a r c u r t a rf ( 23) 我們得到了當前 速度預期的變化。 B.障礙動作 作為輸入避障 動作的參數 ,采用當前笛卡爾速度 ,v x y z , 采用 最近的障礙為 軌道 , 3inR給出機械手 和障礙物 之間方向和距離 。我們現在要 根據到障礙物的方向和距離計算笛卡爾速度的變化 ,并分別 用.manipobsdirf和,manipobsdistf表示 。 1)施力方向: 根據當前機械手的速度 V, 我們計算 向量 in 相互兩者之間的 角 度 i 為 a r c s i n iiivnvn ( 24) 在 機械手尺寸 方向變化的大小, 用( 25) 計算 22, 22m a n i p io b s im a n i po b s i cnee ( 25) 其中 ,obsmanip是 repellor 的數值 , manipobsc根據距離控 制衰減 ,控制 相 對障礙 之間的 角度。 被用于計算預期的機械手方向的改變: iiivnvn ( 26) 根據所有障礙物的作用 ,我們可以 根據 障礙物的方向 計算 機械手運動的改變 : , ()m a n ipio b s d ir i vf ( 27) 2) 動力學速度 : 對速度的動態控制相似于 Eq。 障礙 i的作用是 : 11 ,m i n m i nm i n m a x ,m a x , m a x ,()0()m a n i p v m a n i p m a n i pobsm a n i pm a n i pio b s v e l im a n i p viiobsv f o rf o rv f o rf ( 28) 其中m a x ,m a x , m a x ( , )m a n i po b s i ii kn 。集合 所有障礙的 作用 變成 : ,m a n ip m a n ipo b s o b s v e l iiff ( 29) C.競爭動態 1)目標動作: 對于移動平臺 當目標存在目標動作的競爭優勢值設置為 0.5, 否則設置為 0.5。 當到目標的距離和最近障礙物的距離之間的比例系數超過limmanipitr, 目標與障礙物之間的相互作用需要被重新設置,避障作用受到限制, 這是 有公式( 30)實現: l i m,m i n ( )1 ( 1 t a n h ( ( ) ) )2m a n i p iim a n i p m a n i pg a i n i tt o o lt a r o b st a rnrrd ( 30) 其中 tooltard是機床和目標的距離 ; mobilegainr是一個 如何迅速改變,maniptarobs值 的 增益系數 。 2)障礙: 該 障礙動作的競爭優勢和 在第三節 - C表述的 相同 : 00t a n h ( )m a n i p m a n i pm a n i p m a n i pobs ( 31) 用 Eq( 21) 進行密度計算, 但 用 障礙和 機械手 之間的距離 代替 障礙和 移動 平臺 的距離 。 這種相互之間的作用用公式確定: 0o b s , ,1 ( 1 t a n h ( ) ) ( 1 )2 m a n i p m a n i pm a n i p m a n i pt a r t a r o b s ( 32) 其中當機械手最接近目標時,,(1 )maniptar obs有助于撤銷臂章動作 。 D 收縮 收縮動作是在關節處直接運作的 。 通過定義,hom e c u rq qq , 其中homeq是 指機械手原始的收縮數據配置 ,我們可能計算 關節速度為 : 12 m a xm i n ,m a n i pr e t r a c t r e t r a c t m a n i pr e t r a c tqqqqq ( 33) 其中maxq是 關節 最大的速度 , manipretract為 attractor 的作用參數 。 V.實驗 本實驗的目的主要是展示了移動平臺和機械手的協調。以前的工作已經展示了動力系統方面的方針與導航的能力通過一個環境中移動機器人 13 14和指導一個機器人繞過障礙 16。 (a)移向目標( t=0s) (b)圖像伺服 (t= 28s) (c) 移動到目標 位置 (t = 40s) (d) 完成動作 (t = 72s) 圖 .3移動機器人實驗。 假定環境和目標重物的角度是不變的。 在實驗中使用的平臺 如圖 1所示,是由 一個賽格威 RMP200和 輕重量型 庫卡機器人 與崇德 PG70平行爪裝備組成。該平臺具有一個 SICK LMS291定位 和避障 裝有 Unibrain 13 Fire-iFireWire攝像頭 的 激光掃描儀, 用于機械手瞄準并抓起目標 。不幸的是我們沒有足夠的時間來連接夾持器 和控制目標 。因此, 它僅僅是定位和準備抓。 但實際上從未關閉的抓手。由于控制 框架我們 使用了 Microsoft Robotics Studio1.5,這提供了一個 從 傳感器的各種輸入, 到 驅動器輸出,并確保不同的 控制算法同時運作的方法 。 該賽格威 運動 和 大多數 機械手運動是基于特定 的笛卡爾坐標定位目標的 。但是,一旦目標 在 toolmounted 相機 視線范圍 內,機械手 依靠視覺輸入 指導切換。 第五部分 A將會詳細闡述視覺伺服系統方法,緊接著在第五部分 B中會提供測試結果。 圖 .4.檢測使用微軟機器人 SimpleVision方面的服務 特征 . 黑白邊邊框表示 特征識別 。 A.伺服系統 對于 最終機械手的定位 是使用視覺伺服系統方法獲得標準圖像進行定位的 。特征 檢測 是 根據 Microsoft Robotics Studio 的 SimpleVision 服務 而測定的,獲得 能夠識別顏色的斑點。在這些 試驗中獲得結果我們用 綠色標記 標出 ,如圖 4所示。我們希望該 機械手 的方向是固定的,因此 僅僅需要 3個自由度(自由度)的 位置 應該 被 相關的視覺輸入的影響。這些自由度兩個是 由 BLOB的 定位控制 , 其中一個 應在圖像中心位置。最后的自由度是由 BLOB的大小 決定的 。 B.測試結果 如 圖 3 所示 , 移動機械手的任務是 移動一個瓶子從圖像的桌子上移動到右邊相對 的較遠的箱子里。 機器人 移動、 機械手 收縮和 目標行為有關的 數據關系 可以在圖 5中看到 。 14 圖 .5 機械手運行時各項的 比例系數表 首先 移動機械手 收縮 和 移動指令被激活引起移動 平臺 移 向目標,同時 手臂 保持原始的配 置 裝態 。經過約 7秒之內達到目標 并 獲得 目標信號 ,因此 機械手收縮動作被取消,機械手捕獲動作 被激活。不久后, Segway動作 也 被取消 ,讓機械手拿起無干擾的 目標 。然而 機械手運動 會 導致賽格威漂移, 因此要過一會知道經過 20s之后移動平臺重新被激活 ,在 這 里 移動平臺 又達到了預期目標的相對位 置 。視覺伺服 指揮機械手到 如圖 3( b)所 示的狀態 。經過約 30秒鐘,瓶子應該被 抓手 拾起的 和新的目標是給予,造成機械手 收縮動作被重新激活而機械手捕獲動作被取消 。 同時 移動平臺 移動動作 也被激活,但 當機械臂被收回時移動平臺的移動動作會迅速被取消 。 完成之后 控制 移動 平臺移動到所需位置放置 ,進而 機械手被激活 把目標放到箱子里 。 VI.結論 本文已經介紹了如何 使 動態系統的方法應用于移動操作。 此文的主要結論 包括兩個層次,其中 競爭態勢是用于移動平臺的整體協調和機械手 運動 以及避障和目標獲取 等動作 。該方法 首先 已被證實在模擬環境中, 其次也 通過實際工作的 驗證 。 15 實驗用的系統是 Microsoft Robotics Studio1.5( MSRS)。該系統最初是模擬和參數的調整,采用模擬器進行?;谀M器的物理參數理想的轉向。 整個 MSRS是一個 執行工作 有益環境 的平臺 。 雖然 控制是以 20Hz 被執行的 ,但由于 Windows XP 的 非實 性 ,動作 間 會 有異常值 出現 。 本文出自 2009年 IEEE國際機器人和自動化會議 論文集 參考文獻 1 H. Seraji, A Unified Approach to Motion Control of Mobile Manipulators, The International Journal of Robotics Research, Vol. 17, No. 2, 1998, pp. 107-118. 2 E. Papadopoulos, J. Poulakakis, Planning and Model-Based Control for Mobile Manipulators, Proceedings of the IROS00 , 2000, pp. 1810-1815. 3 Q. Huang, K. Tanie, S. Sugano, Coordinated Motion Planning for a Mobile Manipulator Considering Stability and Manipulation, Thee International Journal of Robotics Research, Vol. 19, No. 8, 2000, pp. 732-742. 4 D.H. Shin, B.S. Hamenr, S. Singh, M. Hwangbo, Motion Planning for a Mobile Manipulator with Imprecise Locomotion, Proceddings of the IROS03, 2003, 847-853. 5 G. Schoner, M. Dose, A dynamical systems approach to task-level system integration used to plan and control autonomous vehicle motion, Robotics and Autonomous Systems, Vol. 10, 1992, pp. 253-267. 6 G. Schoner, M. Dose, C. Engels, Dynamics of behavior: theory and applications for autonomous robot architecture. Robotics and Autonomous Systems, Vol. 16, 1995, pp. 213-245. 7 O. Khatib, Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research, Vol. 5, No. 1, 1986, pp. 90-98. 8 E. Bicho, G. Schoner, The dynamic approach to autonomous robotics demonstrated on a low-level vehicle platform. Robotics and Autonomous Systems, Vol. 21, 1997, pp. 23-35. 9 E. Bicho, P. Mallet, G. Schoner, Using Attractor Dynamics to Control Autonomous Vehicle Motion. Proceedings of the IECON98, Vol. 2, 1998, pp. 1176-1181. 10 E. Bicho, P. Mallet, G. Schoner, Target Representation on an Autonomous Vehicle with Low-Level Sensors The International Journal of Robotics Research, Vol. 19, No. 5, 2000, pp. 424-447. 11 H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, S. Thrun, Principles of Robot Motion . The MIT Press, 2005. 16 12 E.W. Large, H.I. Christensen, R. Bajcsy, Scaling the Dynamic Approach to Path Planning and Control: Competition among Behavioral Constraints. The International Journal of Robotics Research, Vol. 18, No. 1, pp. 37-58. 13 P. Althaus, H.I. Christensen, F. Hoffmann, Using the Dynamical System Approach to Navigate in Realistic Real-World Environments. Proceedings of IROS01 , Vol. 2, 2001, pp. 1023-1029. 14 P. Althaus, Indoor Navigation for Mobile Robots: Control and Representations, Ph.d. Dissertation, Royal Institute of Technology (KTH), Stockholm, Sweden, 2003. 15 S. Goldenstein, E. Large, D. Metaxas, Non-linear dynamical system approach to behavior modeling, The Visual Computer, Vol. 15, 1999, pp. 349-364. 16 I. Iossifidic, G. Schoner, Autonomous reaching and obstacle avoidance with the anthropomorphic arm of a robotics assistant using the attractor dynamics approach, Proceedings of ICRA04, 2004, pp. 4295-4300. 17 L.-P. Ellekilde, J.W. Perram, Tool Center Trajectory Planning for Industrial Robot Manipulators Using Dynamical Systems, The International Journal of Robotics Research, Vol. 24, No. 5, 2005, pp. 385-396. 18 C. Santos, M. Ferreira, Ball Catching by a Puma Arm: a Nonlinear Dynamical Systems Approach, Proceedings of IROS06, 2006, pp.916-921 19 I. Iossifidic, G. Schoner, Dynamical Systems Approach for the Autonomous Avoidance of Obstacles and Joint-limits for an Redundant Robot Arm. Proceedings of the IROS06, 2006, pp. 580-585. 20 P. Jensfelt, H.I. Christensen, Pose tracking using laser scanning and minimalistic environment models, IEEE Transactions on Robotisc and Automation, Vol. 17, No. 2, 2001, pp. 138-147. 21 J. Forsberg, P. A hman, . Wernersson, The Hough transform inside the feedback loop of a mobile robot, Proceedings of ICRA, Vol 1, 1993, pp. 791-798. 22 K.O. Arras, R.Y. Siegwart, Feature Extraction and scene interpredation for map-based nagivation and map building, Proceedings of SPIE, Mobile Robotics XII, Vol. 3210, 1997, pp. 42-53. 23 L.-P. Ellekilde, P. Favrholt, M. Paulin, H.G. Petersen, Robust control for high-speed visual servoing applications, International Journal of Advanced Robotic Systems , Vol. 4, No. 3, 2007, pp. 272-292. 17 2009 IEEE International Conference on Robotics and Automation Kobe International Conference Center Kobe, Japan, May 12-17, 2009 Control of Mobile Manipulator using the Dynamical Systems Approach Lars-Peter Ellekilde Abstract The combination of a mobile platform and a manipulator, known as a mobile manipulator, provides a highly flexible system, which can be used in a wide range of applications, especially within the field of service robotics. One of the challenges with mobile manipulators is the construction of control systems, enabling the robot to operate safely in potentially dynamic environments. In this paper we will present work in which a mobile manipulator is controlled using the dynamical systems approach. The method presented is a two level approach in which competitive dynamics are used both for the overall coordination of the mobile platform and the manipulator as well as the lower level fusion of obstacle avoidance and target acquisition behaviors. I. INTRODUCTION The majority of robotic research has in the last decades focused on either mobile platforms or manipulators, and there have been many impressive results within both areas. Today one of the new challenges is to combine the two areas, into systems, which are both highly mobile and have the ability to manipulate the environment. Especially within service robotics there will be an increased need for such systems. The demography of most western countries causes the number of old people in need of care to increase, while there will be less working to actually support them. This requires an increased automation of the service sector, for which robots able to operate safely in indoor and dynamic environments are essential. 18 Fig. 1. Platform consisting of a Segway RMP200 and a Kuka Light Weight Robot. The platform used in this work is shown in Figure 1, and consist of a Segway RMP200 with a Kuka Light Weight Robot. The result is a platform that has a relative small footprint and is highly maneuverable, making it well suited for moving around in an indoor environment. The Kuka Light Weight Robot has a fairly long reach and high payload compared to its own weight, making it ideal for mobile manipulation. When controlling a mobile manipulator, there is a choice of whether to consider the system as one or two entities. In 1 and 2 they derive Jacobians for both the mobile platform and the manipulator and combine them into a single control system. The research reported in 3 and 4, on the other hand, considers them as separate entities when planning, but do include constraints, such as reachability and stability, between the two. The control system we propose is based on the dynamical systems approach 5, 6. It is divided into two levels, where we at the lower level consider the mobile platform and the manipulator as two separate entities, which are then combined in a safe manner at the upper level. The main reesarch objective in this paper is to demonstrate how the dynamical systems approach can be applied to a mobile manipulator and used to coordinate behaviours at various levels of control. The remaining of this paper is organized as follows. The overall architecture is described in Section II, followed by the control of the mobile platform and the manipulator in Sections III and IV. In Section V we will show some experiments before concluding the paper in Section VI. However, first a summary of work related to the dynamical systems approach will be provided in Section I-A. 19 A. Related Work The dynamical systems approach 5, 6 provides a framework for controlling a robot through a set of behaviors, such as obstacle avoidance and target acquisition. Each behavioris generated through a set of attractors and repellors of a nonlinear dynamical system. These are combined through simple addition of the vector fields to provide the overall behavior of the system. The dynamical systems approach relates to the more widely used potential field method 7, but has certain advantages. Where the behavior in the potential field method is the result of following gradients of the field, the behavior variables, such as heading direction and velocity, can be controlled directly using the dynamical systems approach. The relative low computational cost associated with the approach, makes it suitable for online control in dynamic environments, and allows it to be implemented even on fairly low-level platforms with limited computational capabilities 8. The robustness to noisy sensors is shown in 9 and 10 where a combination of infrared sensors and microphones is used for obstacle avoidance and target acquisition. Despite being able to solve various tasks it is only a local method, for task and mission-level planning other methods (see e.g. 11) should be applied. A drawback of the approach in 5, 6 is the potential creation of spurious attractors when multiple behaviors are combined. To overcome this problem 12 introduces a weighting of the behaviors based on competitive dynamics. The influence of each behavior is controlled using an associated competitive advantage, which together with competitive interactions defined between the behaviors, controls the weights. This approach generalizes to an arbitrary number, n, behaviors, but with a O(n2) worst-case complexity, if competitive interactions between all behaviors are needed. Real-world indoor experiments using this competitive dynamics approach can be found in 13, 14. In 13 only the heading direction of the vehicle is used, whereas in 14 both heading direction and velocity are controlled. 15 provides a brief discussion of strategies for the velocity behavior. The dynamical systems approach has not only been used for planar mobile robots, but also for controlling the tool motion of a manipulator 16. More complex dynamical systems using the Hopf Oscillator for generating limit cycles can also be used. 17 shows how limit cycles with different shapes can be constructed and used for both obstacle avoidance and trajectory generation. 18 uses the Hopf Oscillator to generate a timed trajectory, enabling a manipulator 20 to catch a ball rolling down a table. The dynamical systems approach can not only be used for controlling the tool, but also to control the redundancy of a 7 degrees of freedom manipulator as demonstrated in 19. II. OVERALL ARCHITECTURE The overall architecture of our system is illustrated in Figure 2. To control the mobile platform, in this case a Segway, two low level behaviors are use: One for target acquisition and one for obstacle avoidance. Using competitive dynamics these are fused together to provide the Mobile behavior, which specifies the desired motion of the mobile platform. Similarly we have target acquisition and obstacle avoidance behaviors for the manipulator fused together based on competitive dynamics, to give the Manipulator Acquisition behavior. When the target is not within reach, the manipulator should retract to a safe configuration, which is the purpose of the Manipulator Retract behavior. The last fusion combines the controls in a safe manner, such that the target acquisition and retract behaviors do not disturb one another and the mobile platform does not start moving towards a new target before the manipulator has been retracted. Fig. 2. Overall architecture of the control system Using weights wmobile , manipacquisitionw and manipretractw to represent the influence of the Mobile, Manipulator Acquisition and Manipulator Retract behaviors, the control signals mobileu and manipq for the mobile platform and the manipulator are given by le ftr ig h tum o b ile m o b ile uuw ( 1) 21 m a n i pm a n i p m a n i pm a n i p m a n i pa c q u i s i t i o na c q u i s i t i o n r e t r a c t r e t r a c tqq qww (2) Where (leftu rightu) are control inputs to the left and right wheels of the platform as described in Section III, manipacquisitionqand manipretractqare the manipulator joint velocities as described in Section IV. A. Competitive Dynamics The competitive dynamics approach used is based on 12, but with the additional parameter bT used to control the transition rate as in 14. The dynamical system used is thus given by 3 2( ) ,b b b b b bbbbT w a w w r b b w w n o i s e ( 3) In which ba is the competitive advantage of behavior b and r b ,b is the competitive interaction of behavior b upon b. 1) Mobile: The competitive advantages of the mobile platform should strengthen the behavior when far away from the target and reduce it when the target is reached. This is achieved through t a n h ( ( ) )m o b i l e m o b i l e m o b i l ea t a r t h r e s h o l da k d d ( 4) In which mobileak determines how rapidly the advantage should change, tard is the distance to the target and mobilethresholdd specifies a minimum distance to the target required before the mobile platform should move. The mobile behavior has no ability to interact and suppress other behaviors, thus its competitive interactions are set to 0. 2) Manipulator Acquisition: This behavior should be strengthened when the mobile platform gets close to its target. The competitive advantage will thus be defined as t a n h ( ( ) )m a n i p m a n i p m a n i pa c u i s i t i o n a t a r t h r e s h o l da k d d ( 5) The activation distance manipthresholdd must be greater than mobilethresholdd to make sure the behavior is activated. This behavior has no direct interaction with the others, thus its interactions are set to 0. 22 3) Manipulator Retract: The retract behavior should be activated opposite the goal behavior, hence m anip m anipretract acqisitionaa t a n h ( ( ) )m a n i p m o b i l ea t a r t h r e s h o l dk d d ( 6) Except for a very small transition time this prevents the manipulators acquisition and retract behaviors from being active at the same time, thus we can set , 0retract acquisitionr . For the interaction between the retract and the mobile behaviors we wish retract to deactivate mobile when the manipulator is far away from its home configuration. The interaction is therefore defined as hom, 1 ( 1 t a n h ( ( ) ) )2 r e t r a c tr c u r r e n t e qr e t r a c t a c q u i s i t i o n k q qr ( 7) In which curq and homeq are the manipulators current and home configurations, q specifies a proximity distance around homeq and retractrk specifies how quickly the interaction changes. III. CONTROL OF THE MOBILE PLATFORM The control of the mobile platform is constructed very similar to what is presented in 14, but with a few differences. First of all only the target acquisition and obstacle avoidance behaviors are used. The corridor following and wall avoidance are not included, but would be straight forward extensions. The second area in which this work differs is in how the density of obstacles is calculated. Details of this will be explained in section III-D. For the control to actually be able to navigate through the environment, it is necessary with a method for localization. The approach we have used is based on the method described in 20, which combines odometry and laser range measurements matched against a map of dominating lines in the environment. The control of the platform is encoded using the orientation, and the velocity, , which results in a system with control inputs ,mobilefv ; The values of mobilef are made up of two parts, mobiletarf and mobileobsf , which are combined as m o b i l e m o b i l e m o b i l em o b i l e m o b i l et a r o b st a r o b sf f fww ( 8) 23 Where the weights mobiletarw and mobileobsw are controlled using Eq. (3) with the competitive advantage and interactions described in section III-C. As control input we need expressions for the left and right wheels of the mobile platform, denoted leftu and rightu , respectively. To obtain these v is integrated to get v, which together with the desired rotational velocity , the wheel diameter wheeld and the distance between the wheels wheelbased can be used to calculate the control inputs as ( , ) 2l e f tw h e e lvv du ( 9) ( , ) 2r i g h t r i g h tw h e e lvv duu ( 10) Where is the needed difference in wheel speed given by w heelbasew heeldd ( 12) A. Target Dynamics The basic dynamics of this target behavior is , ,( ) s i n ( )m o b i l e m o b i l et a r t a rt a rf (13) , , m a x( ) ( m i n ( , ) )m o b i l e v m o b i l e v m o b i l et a r t a r t a rt a r v k d v vf (14) In which ,mobiletar and ,mobilevtar are the strengths of the attractors and tar is the direction to the target. The constant mobiletark gives the relation between the distance to the target and the desired velocity. Finally maxv is the maximal velocity allowed for the mobile platform。 B. Obstacle Dynamics Given a distance ,obsid and a direction i to the ith obstacle, the dynamics of the obstacle avoidance are 22,(),2, ()im o b i l eo b s o b s i im o b i l e cdm o b i l eo b s io b s i eef (15) 24 ,m i n m i n,m i n m a x ,m a x , m a x ,()0()m o b i l e vobsm o b i l e vio b s im o b i l e vo b s i iv v f o r v vf o r v v vv v f o r v vf (16) Where m a x , , m i nm a x ( , )i o b s o b s iv k d v The dynamics of consists of 3 elements: (i) The relative direction to the obstacle ()i , (ii) a scale ,mobileobs obs icde in which mobileobsc determines the decay depending of the distance, ,obsid ,and (iii) a scale, 22()2 iie , based on the direction to the obstacle and with ,1a r c s i n ( )1 si o b s iDdensuring the generation of an attractor between two obstacles if the robot can pass through while ensuring the safety distance Ds. See 14 for more details. For ,mobile vobs if the expression adjusts the velocity towards ,obs obs ikd, but ensures that a minimum velocity ofminvis kept. To obtain the value of mobileobsfwe sum over all obstacles ,( ) ( )m o b i l em o b i l em o b i l e o b s iobsm o b i l e v m o b i l e vobs io b s o b s ifffff ( 17)C. Competitive Dynamics The weights for the competitive dynamics are controlled by equation (3) as explained above. Below are the competitive advantages and interactions for the two behaviors. 1) Target: The competitive advantage is set totar 0.5mobile whenever a target is present, otherwisetar 0.5mobile . The target behavior has the ability to interact with and suppress the obstacle avoidance behavior, when the ratio between the distance to the target and the closest object is sufficient to ensure the movement towards the target will be collision free. This is modeled as , m i n, l i m1 ( 1 t a n h ( ( ) ) )2 obsm o b i l e m o b i l e m o b i l et a r o b s g a i n i tt a rrrdd ( 18) 25 In which,minobsdis the distance to the closest obstacle, mobilegainris a gain constant giving how quickly the behavior should interact andlim 1mobileitr expresses the ratio between the distances to obstacle and target for which we will start to suppress obstacle avoidance. 2) Obstacle: The competitive advantage of the obstacle behavior is given by 00t a n h ( )m o b i l e m o b i l em o b i l eobs m o b i l e ( 19) In which mobile is the obstacle density as defined in Section III-D. The interaction is defined as 0,1 (1 t a n h ( ) ) (1 ) ) )2m o b i l e m o b i l eo b s t a r t a r o b s ( 20) The first part, 01 ( 1 t a n h ( ) )2 m o b i l e m o b i l e suppresses the target behavior when the obstacle density exceeds the threshold0mobile. The last part,1 mobiletar obs ,makes sure this only happens when the obstacle avoidance is not being suppressed due to,mobiletarobs . D. Calculation of Obstacle Density Given a set of distances, ,obsid , between the mobile platform and obstacles the density, , is calculated as ,1m a xi o b s id ( 21) This density function differs from 14 in which,obs idi e is used. The main problem with this formulation is that we cannot distinguish between many objects relative far away and a single object closed by. For example having 5 objects 2 meters away will give the same density as a single object 40 centimeters away. With the exponential function a single object in the scene can never cause to exceed 1. The threshold for switching to the obstacle avoidance behavior will thus have to be less than 1, but given a scene with multiple obstacles the threshold of 1 will often be too low. 26 Furthermore it is found that using,1obsidinstead of ,obsiemade tuning the parameters easier as we could now think of the density as the inverse of the distance. It also caused the density to grow very rapidly when getting close to an obstacle, thereby quickly forcing the behaviors to change. IV. CONTROL OF MANIPULATOR We will start by dividing the problem into two parts: 1) Determining the motion of the tool from the current position to the target while avoiding obstacles. 2) Inverse kinematics calculating joint velocities needed for the tool motion. The second part is a well understood problem, which in this work is solved using the inverse kinematics strategy presented in 23. This method incorporates both kinematics and dynamics limitations of the robot, such as joint position, velocity and acceleration limits. Furthermore this approach, based on quadratic optimization, has shown to be very robust with respect to singularities. The motion of the tool is controlled using the manipulators Target and Obstacle behaviors, to which the weights maniptarand manipobsare associated. As input the inverse kinematics needs a 6D velocity screw , , , , ,x y zx y z thus the behaviors must find a change , , , , ,m a n i px y zf x y z which can be integrated to give a desired tool velocity, des ,as .,( ( ) )m a n i p m a n i p m a n i p m a n i p m a n i pd e s c u r t a r t a r o b s o b s d i r o b s d i s td t f f f ( 22) Where maniptarf,.manipobsdirfand,manipobsdistfare the contributions from the target and obstacle avoidance behaviors. A. Target Behavior The inputs to the target behavior are the current and desired tool transformationscuranddesFrom these we can compute a desired 6D velocity-screw tar .To avoid requiring unrealistic fast motionstaris scaled such that m a x, ta rx y z v and m a x,x y zta rw w w wheremaxvandmaxhere represent the maximal 27 allowed linear and rotational velocities of the tool. Calculating ()m a n i p m a n i pt a r t a r c u r t a rf ( 23) We obtain a desired change to the current velocity. B. Obstacle-Behavior As input the obstacle avoidance behavior takes the current Cartesian velocity, ,v x y z and a set of closest obstacles as vectors, 3inR, giving direction and distance between tool and obstacle I . We now wish to compute a change to the Cartesian velocity based on the direction and distance to obstacles, denoted.manipobsdirf and ,manipobsdistfrespectively. 1) Dynamics for Direction: From the current velocity of the tool, v, and the vectorinwe compute the anglei, between the two as a r c s i n iiivnvn ( 24) The size of the change in direction of the tool is then calculated as 22, 22m a n i p io b s im a n i po b s i cnee ( 25) In which ,obsmanip is the strength of the repellor, manipobsccontrol the decay based the distance andcontrols the relation with the angle to the obstacle. is then used to calculate a desired change in the direction of the tool as iiivnvn ( 26) Summing up the contributions from all obstacles we can calculate the change in motion of the tool based on direction to obstacles as , ()m a n ipio b s d ir i vf ( 27) 2) Dynamics for Velocity: The dynamics of the velocity are controlled similar to Eq. (16). The contribution of obstacle I . is 28 ,m i n m i nm i n m a x ,m a x , m a x ,()0()m a n i p v m a n i p m a n i pobsm a n i pm a n i pio b s v e l im a n i p viiobsv f o rf o rv f o rf ( 28)Withm a x ,m a x , m a x ( , )m a n i po b s i ii kn Summing up over all obstacles the total contribution becomes ,m a n ip m a n ipo b s o b s v e l iiff ( 29) C. Competitive Dynamics 1) Target Behavior: As for the mobile platform the competitive advantage of the target behavior is set to 0.5 when a target is present and 0.5 otherwise. The competitive interaction of the target upon the obstacle behavior is again designed such that when the ratio between the distance to the target and to the nearest obstacle is greater then the thresholdlimmanipitrthe obstacle avoidance is suppressed. This is accomplished by l i m,m i n ( )1 ( 1 t a n h ( ( ) ) )2m a n i p iim a n i p m a n i pg a i n i tt o o lt a r o b st a rnrrd ( 30) In which tooltardis the distance between the tool and the target and mobilegainris a gain factor specifying how quickly to change the value of,maniptarobs . 2) Obstacle Behavior: The competitive advantage of the obstacle behavior is the same as in Section III-C, 00t a n h ( )m a n i p m a n i pm a n i p m a n i pobs ( 31) With the density calculated using Eq. (21), but with distances between obstacles and tool instead of obstacles and the mobile platform. The competitive interaction is defined as 0o b s , ,1 ( 1 t a n h ( ) ) ( 1 )2 m a n i p m a n i pm a n i p m a n i pt a r t a r o b s ( 32) In which the,(1 )maniptar obsterm helps to deactivate the obstacle avoidance as the tool gets close to the target. 29 D. Retract Behavior The retract behavior is operating directly in joint space. By defininghom e cu rq q q , where homeqis the home configuration to which it should retract, we can calculate the joint velocities as m a xm i n ,m a n i pr e t r a c t r e t r a c t m a n i pr e t r a c tqqqqq ( 33) Where maxq is the maximal velocity of the joints and manipretract is strength of the attractor. V. EXPERIMENTS The purpose of the experiments are primarily to demonstrate the coordination of the mobile platform and the manipulator. Previous work has already demonstrated the capabilities of the dynamical systems approach with respect to navigating a mobile robot through an environment 13 14 and guiding a manipulator around obstacles 16. The platform used in the experiments is shown in Figure 1 and consists of a Segway RMP200 and a Kuka Light Weight Robot equipped with a Schunk PG70 parallel gripper. The platform has a SICK LMS291 laser scanner for localization and obstacle avoidance and a tool mounted Unibrain Fire-I FireWire camera, used for aligning the gripper to the target. Unfortunately we did not have enough time to connect to the gripper and actually grasp the object. It thus only aligns and prepares to grasp, but never actually closes the gripper. As control framework we have used Microsoft Robotics Studio 1.5, which provided us with a tool for organizing the various inputs from sensors, outputs to actuators and ensuring concurrency of the different control algorithms. The motion of the Segway and the majority of the manipulator movement are based on a specified Cartesian location of the target. However, once the target is within view of the tool mounted camera, the guidance of the manipulator switches to rely on the visual input. Section V-A will explain details about the visual servoing approach, followed by Section V-B, which provides the test results. A. Visual Servoing For the final alignment of the gripper an eye-in-hand image based visual servoing approach is used. Feature extraction is done using the Simple Vision service in Microsoft Robotics Studio, which is able to identify colored blobs. In these experiments we are tracking a green 30 marker as illustrated in Figure 4. We wish the orientation of the tool to be fixed, thus only the 3 degrees of freedom (dof) associated with the position should be influence by the visual input. Two ofthese dof are controlled using the location of the blob, which should be centered in the image. The last dof is controlled by the size of the blob. (a) Move to target (time = 0s) (b) Visual servoing (time = 28s) (c) Move to place position (time = 40s) (d) Place item (time = 72s) Fig . 3 . Experiment with the mobile manipulator. Weights the top right corner to weights corresponding to the given situation. Fig. 4. Feature detection using Microsoft Robotics Studios SimpleVision service. The black and white 31 border marks the feature identified. B. Test Results The task of the mobile manipulator is, as illustrated in Figure 3, to move a bottle from the table in the middle of the image to the box located to the far right. The weights associated with the Mobile, Manipulator Retract and Manipulator Target behaviors can be found in Figure 5. Initially both the Manipulator Retract and the Mobile behaviors are active causing the platform to move towards the target, while keeping the arm in its home configuration. After about 7 seconds the object gets within reach, thus the Manipulator Retract behavior deactivates and Manipulator Acquisition is activated. Shortly after the Segway behavior is also deactivated, to let the manipulator pick up the object without disturbances. However, the motion of the manipulator causes the Segway to drift, thus after a little while the mobile platform is reactivated until about time equals 20s, where it has again reached the desired position relative to the target. The visual servoing then aligns the gripper to the bottle as illustrated in Figure 3(b). After around 30 seconds the bottle should have been picked up by the gripper and a new target is given, causing the Manipulator Retract behavior to reactivate and Manipulator Acquisition to deactivate. At this point the mobile platform behavior is also activated, but is quickly suppressed while the arm is being retracted. Afterwards the control moves the platform to the desired location where the manipulator is activated to place the object. Fig. 5. Weights of the behaviors while operating VI. CONCLUSION In this paper it has been presented how the dynamic systems approach can be applied to 32 mobile manipulation. The contributions include a two level approach in which competitive dynamics are used both for the overall coordination of a mobile platform and a manipulator as well as the obstacle avoidance and target acquisition behaviors. The approach has been verified first
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中級倉庫考試題及答案
- 品質人員考試題及答案
- 2024年紡織工程師證書考試模擬練習試題及答案
- 機關政策法規試題及答案
- 2024年紡織品設計師證書復習要點試題及答案
- 河流水系試題及答案詳解
- 云南旅游文化試題及答案
- 廣告設計中常用的心理學原理分析試題及答案
- 科技驅動下的紡織設計變革嘗試試題及答案
- 東營社工考試試題及答案
- 統編版七年級語文下冊《第16課有為有不為》教案
- 高中部學生會職責與組織架構分析
- 骨科專業培訓計劃及總結
- 鋼結構鋼筋大棚施工方案
- 安全生產法律法規匯編(2025版)
- 質量環境職業健康安全管理體系程序文件(終稿)
- 家政服務行業的數字化轉型及創新服務模式研究
- 鎮掃黑除惡培訓
- IDC基礎知識培訓課件
- 《福建省城鎮道路清掃保潔作業指導價》
- 第三類醫療器械崗前培訓
評論
0/150
提交評論