實驗三線性系統的頻域分析_第1頁
實驗三線性系統的頻域分析_第2頁
實驗三線性系統的頻域分析_第3頁
實驗三線性系統的頻域分析_第4頁
實驗三線性系統的頻域分析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、.自動控制理論上機實驗報告學院:機電工程學院班級: 13 級電信一班姓名:學號:.實驗三線性系統的頻域分析一、實驗目的1掌握用 matlab語句繪制各種頻域曲線。2掌握控制系統的頻域分析方法。二、基礎知識及matlab函數頻域分析法是應用頻域特性研究控制系統的一種經典方法。它是通過研究系統對正弦信號下的穩態和動態響應特性來分析系統的。采用這種方法可直觀的表達出系統的頻率特性,分析方法比較簡單,物理概念明確。1頻率曲線主要包括三種:nyquist圖、 bode 圖和 nichols圖。1) nyquist 圖的繪制與分析matlab中繪制系統 nyquist 圖的函數調用格式為 :nyquist

2、(num,den)頻率響應 w 的范圍由軟件自動設定nyquist(num,den,w)頻率響應 w 的范圍由人工設定re,im= nyquist(num,den)返回奈氏曲線的實部和虛部向量,不作圖例 4-1: 已知系統的開環傳遞函數為 g( s)2s6s3 2s2,試繪制 nyquist5s 2圖,并判斷系統的穩定性。num=2 6;den=1 2 5 2;z,p,k=tf2zp(num,den); pnyquist(num,den)極點的顯示結果及繪制的nyquist圖如圖4-1 所示。由于系統的開環右根數p=0,系統的nyquist 曲線沒有逆時針包圍 (-1 ,j0 )點,所圖 4-

3、1開環極點的顯示結果及nyquist 圖以閉環系統穩定。p =-0.7666 + 1.9227i-0.7666 - 1.9227i.-0.4668若上例要求繪制(10 2 ,10 3 ) 間的 nyquist圖,則對應的 matlab語句為 :num=2 6;den=1 2 5 2;w=logspace(-1,1,100);即在 10-1 和 101 之間,產生 100 個等距離的點nyquist(num,den,w)2) bode圖的繪制與分析系統的 bode 圖又稱為系統頻率特性的對數坐標圖。bode 圖有兩張圖,分別繪制開環頻率特性的幅值和相位與角頻率的關系曲線,稱為對數幅頻特性曲線和對

4、數相頻特性曲線。matlab中繪制系統 bode圖的函數調用格式為 :bode(num,den)頻率響應 w 的范圍由軟件自動設定bode(num,den,w) 頻率響應 w 的范圍由人工設定 mag,phase,w=bode(num,den,w) 指定幅值范圍和相角范圍的伯德圖例 4-2: 已知開環傳遞函數為30(0.2s1)g ( s)216s,試繪制系統的伯德圖。s(s100)num=006 30;den=1 161000;w=logspace(-2,3,100);bode(num,den,w)grid繪制的 bode 圖如圖 4-2(a) 所示,其頻率范圍由人工選定,而伯德圖的幅值范圍

5、和相角范圍是自動確定的。 當需要指定幅值范圍和相角范圍時, 則需用下面的功能指令 :mag,phase,w=bode(num,den,w).圖 4-2(a)幅值和相角范圍自動確定的bode 圖圖 4-2(b)指定幅值和相角范圍的bode 圖mag,phase是指系統頻率響應的幅值和相角, 由所選頻率點的w值計算得出。其中,幅值的單位為db,它的算式為 magdb=20lg10(mag)。指定幅值范圍和相角范圍的matlab調用語句如下,圖形如圖4-2(b) 所示。num=001530;den=1 161000;w=logspace(-2,3,100);mag,phase,w=bode(num,

6、den,w);%指定 bode圖的幅值范圍和相角范圍subplot(2,1,1);%將圖形窗口分為 2*1 個子圖,在第 1 個子圖處繪制圖形semilogx(w,20*log10(mag); %使用半對數刻度繪圖,x 軸為 log10刻度, y 軸為線性刻度grid onxlabel(w/s-1 ); ylabel(l(w)/db );title(bode diagram of g(s)=30(1+0.2s)/s(s2+16s+100);subplot(2,1,2);%將圖形窗口分為2*1 個子圖,在第2 個子圖處繪制圖形semilogx(w,phase);grid onxlabel(w/s

7、-1 ); ylabel( 0) );注意 : 半bode 圖 的 繪 制 可 用semilgx函 數 實現 , 其 調 用 格 式 為.semilogx(w,l),其中 l=20*log10(abs(mag) 。3) nichols 圖的繪制在 matlab中繪制 nichols 圖的函數調用格式為 : mag,phase,w=nichols(num,den,w) plot(phase,20*log10(mag)例 4-3: 單位負反饋的開環傳遞函數為g(s)10,繪制 nichols 圖。3s2s39s對應的 matlab語句如下,所得圖形如圖 4-3所示 :num=10; den=1 3

8、 9 0;w=logspace(-1,1,500);mag,phase=nichols(num,den,w);plot(phase,20*log10(mag)ngrid % 繪制 nichols圖線上的網格2幅值裕量和相位裕量圖 4-3n ichols 圖幅值裕量和相位裕量是衡量控制系統相對穩定性的重要指標, 需要經過復雜的運算求取。應用 matlab功能指令可以方便地求解幅值裕量和相位裕量。其 matlab調用格式為 : gm,pm,wcg,wcp=margin(num,den)其中, gm,pm分別為系統的幅值裕量和相位裕量,而 wcg,wcp分別為幅值裕量和相位裕量處相應的頻率值。另外,

9、還可以先作 bode 圖,再在圖上標注幅值裕量 gm和對應的頻率 wcg,相位裕量 pm和對應的頻率 wcp。其函數調用格式為 :margin(num,den)例 4-4: 對于例 4-3 中的系統,求其穩定裕度,對應的matlab語句如下 :num=10; den=1 3 9 0;gm,pm,wcg,wcp=margin(num,den);gm,pm,wcg,wcpgm =2.7000pm =64.6998.wcg =3.0000wcp =1.1936如果已知系統的頻域響應數據,還可以由下面的格式調用函數:gm,pm,wcg,wcp=margin(mag,phase,w)其中( mag,ph

10、ase,w)分別為頻域響應的幅值、相位與頻率向量。三、實驗內容1典型二階系統2g(s)n22 n s2sn繪制出 n6 ,0.1,0.3 ,0.5 ,0.8 ,2 的 bode 圖,記錄并分析對系統 bode圖的影響。解:當 wn=6,0.1 時程序如下num=0 0 36;den=1 1.2 36;w=logspace(-2,3,100);bode(num,den,w)grid結果如圖.當 wn=6,阻尼系數為 0.3 時 程序如下num=36;den=1 3.6 36;w=logspace(-2,3,100);bode(num,den,w)grid結果如圖.當 wn=6,阻尼系數為 0.5

11、 時 程序如下num=36;den=1 6 36;w=logspace(-2,3,100);bode(num,den,w)grid結果如圖.當 wn=6,阻尼系數為 0.8 時 程序如下num=36;den=1 9.6 36;w=logspace(-2,3,100);bode(num,den,w)grid結果如圖.當 wn=6,阻尼系數為 0.8 時 程序如下num=36;den=1 24 36;w=logspace(-2,3,100);bode(num,den,w)grid結果如圖.2系統的開環傳遞函數為g(s)10s2 (5s 1)(s 5)g( s)8( s1)s2 (s 15)(s26

12、s 10)g(s)4(s/ 31)s(0.02s1)(0.05s1)(0.1s1)繪制系統的 nyquist曲線、 bode 圖,說明系統的穩定性,并通過繪制階躍響應曲線驗證。解:開環傳遞函數為g( s)10程序如下s2 (5s 1)(s5)num=10;den=5 24 -5 0 0;z,p,k=tf2zp(num,den); pnyquist(num,den).gridnyquist 曲線如下num=0 0 0 0 36;den=5 24 -5 0 0;w=logspace(-2,3,100);bode(num,den,w)grid波特圖如下.8( s1)開環傳遞函數為g( s)s2 (s

13、 15)( s2 6s 10)程序如下num=8 8;den=5 21 100 150 0 0;z,p,k=tf2zp(num,den); pnyquist(num,den)gridnyquist 曲線如下.num=0 0 0 0 0 36;den=5 21 100 150 0 0;w=logspace(-2,3,100);bode(num,den,w)grid波特圖如下.開環傳遞函數g( s)4(s / 31)1)(0.05s1)(0.1s1)s(0.02s程序如下num=0 0 0 1.6 4;den=0.0001 0.08 0.17 1 0;z,p,k=tf2zp(num,den); pnyquist(num,den)gridnyquist 曲線如下.num=0 0 0 1.6 4;den=0.0001 0.08 0.17 1 0;w=logspace(-2,3,100);bode(num,den,w)grid波特圖如下.3 已知系統的開環傳遞函數為 g(s)s 1。求系統的開環截止頻率、s2 (0.1s 1)穿越頻率、幅值裕度和相位裕度。應用頻率穩定判據判定系統的穩定性。解:程序如下num=1 1;den=0.1 1 0 0;gm,pm,wcg

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論