




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年八下數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.現有兩根木棒,長度分別為5cm和17cm,若不改變木棒的長度,要釘成一個三角形木架,則應在下列四根木棒中選取()A.24cm的木棒 B.15cm的木棒 C.12cm的木棒 D.8cm的木棒2.如圖,已知和都是等腰直角三角形,,則的度數是().A.144° B.142° C.140° D.138°3.如圖,線段與交于點,且,則下面的結論中不正確的是()A. B.C. D.4.利用形如這個分配性質,求的積的第一步驟是()A. B.C. D.5.某家具生產廠生產某種配套桌椅(一張桌子,兩把椅子),已知每塊板材可制作桌子1張或椅子4把,現計劃用120塊這種板材生產一批桌椅(不考慮板材的損耗),設用x塊板材做桌子,用y塊板材做椅子,則下列方程組正確的是()A. B. C. D.6.下列說法正確的是()A.-3是-9的平方根 B.1的立方根是±1C.是的算術平方根 D.4的負的平方根是-27.下列各式是最簡二次根式的是()A. B. C. D.8.如圖,在四邊形ABCD中,,,,.分別以點A、C為圓心,大于長為半徑作弧,兩弧交于點E,作射線BE交AD于點F,交AC于點O.若點O是AC的中點,則CD的長為()A. B.4 C.3 D.9.-的相反數是()A.- B.- C. D.10.下列說法正確的是()A.等腰直角三角形的高線、中線、角平分線互相重合 B.有兩條邊相等的兩個直角三角形全等C.四邊形具有穩定性 D.角平分線上的點到角兩邊的距離相等11.2211年3月11日,里氏1.2級的日本大地震導致當天地球的自轉時間較少了2.22222216秒,將2.22222216用科學記數法表示為()A. B. C. D.12.能將三角形面積平分的是三角形的()A.角平分線 B.高 C.中線 D.外角平分線二、填空題(每題4分,共24分)13.已知函數y=3xn-1是正比例函數,則n的值為_____.14.一個多邊形的內角和是它的外角和的4倍,則這個多邊形的邊數是________.15.在8×8的格子紙上,1×1小方格的頂點叫做格點.△ABC的三個頂點都是格點(位置如圖).若一個格點P使得△PBC與△PAC的面積相等,就稱P點為“好點”.那么在這張格子紙上共有_____個“好點”.16.如果分式有意義,那么x的取值范圍是____________.17.如圖,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分別找一點M、N,當△AMN的周長最小時,∠AMN+∠ANM的度數是_____.18.已知a+b=2,則a2﹣b2+4b的值為____.三、解答題(共78分)19.(8分)計算:(1);(2).20.(8分)如圖,已知AC∥BD.(1)作∠BAC的平分線,交BD于點M(尺規作圖,保留作圖痕跡,不用寫作法);(2)在(1)的條件下,試說明∠BAM=∠AMB.21.(8分)如圖,CD⊥AB,BE⊥AC,垂足分別為點D,E,其中BE,CD相交于點O,∠BAO=∠CAO.求證:OB=OC.22.(10分)如圖,在ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分線,DE交BC于點D,交AB于點E,求AE的長.23.(10分)解方程組:(1);(2).24.(10分)解不等式組25.(12分)計算下列各小題(1)(2)26.用分式方程解決問題:元旦假期有兩個小組去攀登--座高h米的山,第二組的攀登速度是第--組的a倍.(1)若,兩小組同時開始攀登,結果第二組比第一組早到達頂峰.求兩個小組的攀登速度.(2)若第二組比第一組晚出發,結果兩組同時到達頂峰,求第二組的攀登速度比第一組快多少?(用含的代數式表示)
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據三角形的三邊關系,確定第三邊的取值范圍,即可完成解答.【詳解】解:由三角形的三邊關系得:17-5<第三邊<17+5,即第三邊在12到22之間故答案為B.本題考查了三角形的三邊關系的應用,找到三角形三邊關系與實際問題的聯系是解答本題的關鍵.2、C【分析】根據和都是等腰直角三角形,得,,,從而通過推導證明,得;再結合三角形內角和的性質,通過計算即可得到答案.【詳解】∵和都是等腰直角三角形∴,,∴∴∴∴∴∴故選:C.本題考查了等腰直角三角形、全等三角形、三角形內角和的知識;解題的關鍵是熟練掌握等腰直角三角形、全等三角形、三角形內角和的性質,從而完成求解.3、B【分析】根據SSS可以證明△ABC≌△BAD,從而得到其對應角相等、對應邊相等.【詳解】解:A、根據SSS可以證明△ABC≌△BAD,故本選項正確;
B、根據條件不能得出OB,OC間的數量關系,故本選項錯誤;
C、根據全等三角形的對應角相等,得∠CAB=∠DBA,故本選項正確;
D、根據全等三角形的對應角相等,得∠C=∠D,故本選項正確.
故選:B.此題綜合考查了全等三角形的判定和性質,注意其中的對應關系.4、A【分析】把3x+2看成一整體,再根據乘法分配律計算即可.【詳解】解:的積的第一步驟是.故選:A.本題主要考查了多項式乘多項式的運算,把3x+2看成整體是關鍵,注意根據題意不要把x-5看成整體.5、D【分析】設用x塊板材做桌子,用y塊板材做椅子,根據“用120塊這種板材生產一批桌椅”,即可列出一個二元一次方程,根據“每塊板材可做桌子1張或椅子4把,使得恰好配套,一張桌子兩把椅子”,列出另一個二元一次方程,即可得到答案.【詳解】設用x塊板材做桌子,用y塊板材做椅子,∵用100塊這種板材生產一批桌椅,∴x+y=120①,生產了x張桌子,4y把椅子,∵使得恰好配套,1張桌子4把椅子,∴2x=4y②,①和②聯立得:,故選:D.本題考查了由實際問題抽象出二元一次方程組,正確找出等量關系,列出二元一次方程組是解題的關鍵.6、D【解析】各式利用平方根,立方根定義判斷即可.【詳解】A.﹣3是9的平方根,不符合題意;B.1的立方根是1,不符合題意;C.當a>0時,是的算術平方根,不符合題意;D.4的負的平方根是-2,符合題意.故選D.本題考查了立方根,平方根,以及算術平方根,熟練掌握各自的定義是解答本題的關鍵.7、D【分析】根據最簡二次根式是被開方數不含分母,被開方數不含開的盡的因數或因式,可得答案.【詳解】A.==,不是最簡二次根式,此選項不正確;B.=,不是最簡二次根式,此選項不正確;C.=,不是最簡二次根式,此選項不正確;D.是最簡二次根式,此選項正確.故選D.本題考查了最簡二次根式,熟練掌握概念是解題的關鍵.8、A【分析】連接FC,先說明∠FAO=∠BCO,由OE垂直平分AC,由垂直平分線的性質可得AF=FC,再證明△FOA≌△BOC,可得AF=BC=3,再由等量代換可得FC=AF=3,然后利用線段的和差求出FD=AD-AF=1.最后在直角△FDC中利用勾股定理求出CD即可.【詳解】解:如圖,連接FC,∵由作圖可知∴AF=FC,∵AD//BC,∴∠FAO=∠BCO,在△FOA與△BOC中,∠FAO=∠BCO,OA=OC,∠AOF=∠COB∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD-AF=4-3=1.在△FDC中,∠D=90°,∴CD2+DF2=FC2,即CD2+12=32,解得CD=.故答案為A.本題主要考查了勾股定理、線段垂直平分線的判定與性質、全等三角形的判定與性質,運用全等三角形的性質求得CF和DF是解答本題的關鍵.9、D【解析】相反數的定義:只有符號不同的兩個數互為相反數,1的相反數是1.【詳解】根據相反數、絕對值的性質可知:-的相反數是.故選D.本題考查的是相反數的求法.要求掌握相反數定義,并能熟練運用到實際當中.10、D【分析】根據等腰三角形的性質、全等三角形的判定、四邊形的性質、角平分線的性質判斷即可.【詳解】解:等腰三角形底邊上的中線、高線和所對角的角平分線互相重合,A選項錯誤;有兩條邊相等的兩個直角三角形全等,必須是對應直角邊或對應斜邊,B選項錯誤;四邊形不具有穩定性,C選項錯誤;角平分線上的點到角兩邊的距離相等,符合角平分線的性質,D選項正確.故選D.本題比較簡單,考查的是等腰三角形的性質、全等三角形的判定、四邊形的性質、角平分線的性質,需要準確掌握定理內容進行判斷.11、A【分析】科學記數法的表示形式為a×12n的形式,其中1≤|a|<12,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】,故選A.此題考查科學記數法的表示方法.科學記數法的表示形式為a×12n的形式,其中1≤|a|<12,n為整數,表示時關鍵要正確確定a的值以及n的值.12、C【解析】試題解析:根據三角形的面積公式,只要兩個三角形具有等底等高,則兩個三角形的面積相等.根據三角形的中線的概念,故能將三角形面積平分的是三角形的中線.故選C.考點:1.三角形的中線;2.三角形的面積.二、填空題(每題4分,共24分)13、1【分析】根據正比例函數:正比例函數y=kx的定義條件是:k為常數且k≠0,可得答案.【詳解】解:∵函數y=3xn﹣1是正比例函數,∴n﹣1=1,則n=1.故答案是:1.本題主要考查正比例函數的概念,掌握正比例函數的概念是解題的關鍵.14、十【分析】設這個多邊形有條邊,則其內角和為外角和為再根據題意列方程可得答案.【詳解】解:設這個多邊形有條邊,則其內角和為外角和為故答案為:十.本題考查的是多邊形的內角和與外角和,掌握利用多邊形的內角和與外角和定理列一元一次方程解決問題是解題的關鍵.15、1【分析】要使△PBC與△PAC的面積相等,則P點到BC的距離必是P點到AC距離有2倍,通過觀察便可確定P的所有位置,從而得出答案.【詳解】解:∵AC=1,BC=4,∴當P到BCBC的距離是P點到AC的距離的2倍時,△PBC與△PAC的面積相等,滿足這樣的條件的P點共有如圖所示的1個格點,∴在這張格子紙上共有1個“好點”.故答案為:1.本題考查了三角形的面積,識圖能力,正確理解新定義,確定P到BC,BC的距離是P點到AC的距離的2倍是解題的關鍵.16、x≠1【解析】∵分式有意義,∴,即.故答案為.17、160°.【解析】分析:根據要使△AMN的周長最小,即利用點的對稱,使三角形的三邊在同一直線上,作出A關于BC和CD的對稱點A′,A″,即可得出∠AA′M+∠A″=∠AA″A′=80°,進而得出∠AMN+∠ANM=2(∠AA′M+∠A″),即可得出答案.詳解:作A關于BC和CD的對稱點A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長最小值.∵∠DAB=100°,∴∠AA′M+∠A″=80°.由軸對稱圖形的性質可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160°.故答案為:160°.點睛:本題考查的是軸對稱-最短路線問題,涉及到平面內最短路線問題求法以及三角形的外角的性質和垂直平分線的性質等知識,根據已知得出M,N的位置是解題關鍵.18、4【解析】試題分析:因為,所以.考點:1.因式分解;2.求代數式的值.三、解答題(共78分)19、(1);(2)【分析】(1)先計算冪的乘方運算,再利用單項式乘以單項式法則計算即可求出值;
(2)先利用完全平方公式、單項式乘以多項式、平方差公式計算,合并即可得到結果.【詳解】(1);(2).此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.20、(1)見解析(2)見解析【分析】(1)根據角平分線的作法可以解答本題;(2)根據角平分線的性質和平行線的性質可以解答本題.【詳解】(1)如圖所示;(2)∵AM平分∠BAC,∴∠CAM=∠BAM,∵AC∥BD,∴∠CAM=∠AMB,∴∠BAM=∠AMB.本題考查基本作圖、角平分線的性質、平行線的性質,解答本題的關鍵是明確題意,畫出相應的圖形,利用數形結合的思想解答.21、見解析【分析】根據垂直的定義和角平分線的性質可得∠BDO=∠CEO=90°、OD=OE,然后利用ASA即可證出△ODB≌△OEC,從而證出結論.【詳解】解:∵CD⊥AB,BE⊥AC,∴∠BDO=∠CEO=90°.∵∠BAO=∠CAO,∴OD=OE.在△ODB和△OEC中∴△ODB≌△OEC(ASA).∴OB=OC.此題考查的是角平分線的性質、全等三角形的判定及性質,掌握角平分線的性質、全等三角形的判定及性質是解決此題的關鍵.22、【分析】根據勾股定理的逆定理可得是直角三角形,且∠A=90°,然后設,由線段垂直平分線的性質可得,再根據勾股定理列方程求出x即可.【詳解】解:連接,∵在中,,,,∴,∴是直角三角形,且∠A=90°,∵是的垂直平分線,∴,設,則,∴,解得,即的長是.本題考查了線段垂直平分線的性質,勾股定理及其逆定理.關鍵是掌握勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方;勾股定理的逆定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.23、(1);(2).【分析】(1)用加減消元法求解即可;(2)用加減消元法求解即可.【詳解】解:(1),③①×5得:,③-②得:,解得:,把代入①得:,解得:,故方程組的解為:;(2)方程組整理得:,①+②得:,解得:,把代入①得:,解得:,故方程組的解為:.本題主要考查解二元一次方程組,解題的關鍵是熟
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 來華留學生中級漢語綜合課多模態線上教學研究
- 餐飲衛生安全教育培訓
- 自我認知與心理健康
- 小班幼兒游戲活動課件設計
- 大班健康:吃進去的食物去哪了
- 解讀護理條例案例
- 我愛游泳健康教育指南
- 頸椎影像檢查技術課件教學
- 2025年吉林省中考招生考試數學真題試卷(真題+答案)
- 客服培訓與發展戰略
- 江蘇揚州經濟技術開發區區屬國有企業招聘筆試真題2024
- CT增強掃描造影劑外滲的預防與處理
- 深靜脈置管的維護與護理
- 孤獨癥業務管理制度
- 勞務服務購買協議書范本
- Alport綜合征基因診斷
- 搜身帶離技術課件
- 校準員試題及答案
- 2025-2030年中國臨空經濟行業深度評估及市場研究發展研究報告
- 蕪湖勞動合同書版模板
- DB31/T 921-2015婚慶服務規范
評論
0/150
提交評論